On Multiple Zeros of a Partial Theta Function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the partial theta function $\theta (q,x):=\sum_{j=0}^{\infty}q^{j(j+1)/2}x^j$, where $x\in \mathbb{C}$ is a variable and $q\in \mathbb{C}$, $0|q|1$, is a parameter. We show that, for any fixed $q$, if $\zeta$ is a multiple zero of the function $\theta (q,\cdot)$, then $|\zeta |\le 8^{11}$.
Keywords: partial theta function, multiple zero, series.
@article{FAA_2016_50_2_a7,
     author = {V. P. Kostov},
     title = {On {Multiple} {Zeros} of a {Partial} {Theta} {Function}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a7/}
}
TY  - JOUR
AU  - V. P. Kostov
TI  - On Multiple Zeros of a Partial Theta Function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 84
EP  - 88
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a7/
LA  - ru
ID  - FAA_2016_50_2_a7
ER  - 
%0 Journal Article
%A V. P. Kostov
%T On Multiple Zeros of a Partial Theta Function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 84-88
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a7/
%G ru
%F FAA_2016_50_2_a7
V. P. Kostov. On Multiple Zeros of a Partial Theta Function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a7/

[1] G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook, Part II, Springer-Verlag, New York, 2009 | MR | Zbl

[2] B. C. Berndt, B. Kim, Proc. Amer. Math. Soc., 139:11 (2011), 3779–3788 | DOI | MR | Zbl

[3] K. Bringmann, A. Folsom, R. C. Rhoades, Ramanujan J., 29:1–3 (2012), 295–310 | DOI | MR | Zbl

[4] G. H. Hardy, Messenger of Math., 34 (1904), 97–101 | Zbl

[5] J. I. Hutchinson, Trans. Amer. Math. Soc., 25:3 (1923), 325–332 | DOI | MR | Zbl

[6] O. M. Katkova, T. Lobova, A. M. Vishnyakova, Comput. Methods Funct. Theory, 3:2 (2003), 425–441 | DOI | MR | Zbl

[7] V. P. Kostov, Bull. Sci. Math., 137:8 (2013), 1018–1030 | DOI | MR | Zbl

[8] V. P. Kostov, Rev. Mat. Complut., 27:2 (2014), 677–684 | DOI | MR | Zbl

[9] V. P. Kostov, Proc. Roy. Soc. Edinburgh, Sect. A, 144:5 (2014), 925–933 | DOI | MR | Zbl

[10] V. P. Kostov, C. R. Acad. Bulgare Sci., 67:10 (2014), 1319–1326 | MR | Zbl

[11] V. P. Kostov, B. Shapiro, Duke Math. J., 162:5 (2013), 825–861 | DOI | MR | Zbl

[12] I. V. Ostrovskii, Israel Math. Conf. Proceedings, 15 (2001), 297–310 | MR | Zbl

[13] M. Petrovitch, Atti del IV Congresso Internationale dei Matematici, Rome (Ser. 1), 2 (1908), 36–43

[14] A. Sokal, Adv. Math., 229:5 (2012), 2603–2621 | DOI | MR | Zbl

[15] S. O. Warnaar, Proc. London Math. Soc. (3), 87:2 (2003), 363–395 | DOI | MR | Zbl

[16] Wikipedia, Jacobi theta function