Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_2_a3, author = {G. M. Henkin and A. A. Shananin}, title = {Cauchy--Gelfand {Problem} and the {Inverse} {Problem} for a {First-Order} {Quasilinear} {Equation}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {61--74}, publisher = {mathdoc}, volume = {50}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/} }
TY - JOUR AU - G. M. Henkin AU - A. A. Shananin TI - Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2016 SP - 61 EP - 74 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/ LA - ru ID - FAA_2016_50_2_a3 ER -
%0 Journal Article %A G. M. Henkin %A A. A. Shananin %T Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation %J Funkcionalʹnyj analiz i ego priloženiâ %D 2016 %P 61-74 %V 50 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/ %G ru %F FAA_2016_50_2_a3
G. M. Henkin; A. A. Shananin. Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 61-74. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/
[1] B. Riemann, “Ueber die Fortpflanrung eberner Luftwellen von endlicher Schwingungswate”, Goettengen Abh. Math., 8 (1860), 43–65
[2] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[3] E. Hopf, “Generalized solutions of non-linear equations of first order”, J. Math. Mech., 14:6 (1965), 951–973 | MR | Zbl
[4] I. M. Gelfand, “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl
[5] O. A. Oleinik, “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2 (1959), 165–170 | MR | Zbl
[6] O. A. Oleinik, “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, UMN, 12:3 (1957), 3–73 | MR | Zbl
[7] O. A. Ladyzhenskaya, “O postroenii razryvnykh reshenii kvazilineinykh uravnenii kak predelov reshenii sootvetstvuyuschikh parabolicheskikh uravnenii pri stremlenii «koeffitsienta vyazkosti» k nulyu”, Dokl. AN SSSR, 111:2 (1956), 291–294 | MR | Zbl
[8] S. N. Kruzhkov, “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl
[9] S. N. Kruzhkov, Nelineinye uravneniya s chastnymi proizvodnymi, ch. 2, Izd-vo MGU, M., 1970
[10] S. N. Kruzhkov, N. S. Petrosyan, “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nelineinykh uravnenii pervogo poryadka”, UMN, 42:5 (1987), 3–40 | MR | Zbl
[11] M. Bardi, L. C. Evans, “On Hopf's formulas for solution of Hamilton–Jacobi equations”, Nonlinear Anal., 8:11 (1984), 1373–1381 | DOI | MR | Zbl
[12] N. S. Petrosyan, “Ob asimptotike resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s nevypukloi funktsiei sostoyaniya”, UMN, 38:2 (1983), 213–214 | MR | Zbl
[13] N. S. Petrosyan, Ob asimptotike pri bolshikh znacheniyakh vremeni resheniya zadachi Koshi dlya kvazilineinogo zakona sokhraneniya s nevypukloi funktsiei potoka, Deponirovana v VINITI, rukopis 1144-V97, 1997
[14] G. Jennings, “Piecewise smooth solutions of a single conservation law exist”, Adv. Math., 33:2 (1979), 192–205 | DOI | MR | Zbl
[15] G. M. Henkin, A. A. Shananin, “Cauchy–Gelfand problem for quasilinear conservation law”, Bull. Sci. Math., 138:7 (2014), 783–804 | DOI | MR | Zbl
[16] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Volny i struktury v nelineinykh sredakh bez dispersii, Fizmatlit, M., 2008
[17] A. M. Ilin, O. A. Oleinik, “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51:2 (1960), 191–216 | MR | Zbl
[18] Ya. B. Zeldovich, “Gravitational instability: an approximate theory for large density perturbation”, Astron. Astrophys., 5 (1970), 84–89
[19] U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski, “A reconstruction of initial condition of the Universe by optimal mass transportation”, Nature, 417, 16 May (2002), 260–262 | DOI
[20] G. M. Henkin, A. A. Shananin, “Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations”, J. Math. Pures Appl., 83:12 (2004), 1457–1500 | DOI | MR | Zbl
[21] G. M. Henkin, A. E. Tumanov, A. A. Shananin, “Estimates for solution of Burgers type equations and some applications”, J. Math. Pures Appl., 84:6 (2005), 717–752 | DOI | MR | Zbl
[22] G. M. Henkin, “Asymptotic structure for solution of the Cauchy problems for Burgers type equations”, J. Fixed Point Theory Appl., 1:2 (2007), 239–291 | DOI | MR | Zbl
[23] S. Angenent, “The zero set of a solution of a parabolic equation”, J. Reine Angew. Math., 390 (1988), 79–96 | MR | Zbl
[24] G. M. Henkin, “Burgers type equations, Gelfand's problem and Schumpeterian dynamics”, J. Fixed Point Theory Appl., 11:2 (2012), 199–223 | DOI | MR | Zbl