Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 61-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gelfand's problem on the large time asymptotics of the solution of the Cauchy problem for a first-order quasilinear equation with initial conditions of the Riemann type is considered. Exact asymptotics in the Cauchy–Gelfand problem are obtained and the initial data parameters responsible for the localization of shock waves are described on the basis of the vanishing viscosity method with uniform estimates without the a priori monotonicity assumption for the initial data.
Keywords: quasilinear equation, Cauchy problem, asymptotics, vanishing viscosity method, Maxwell's rule.
@article{FAA_2016_50_2_a3,
     author = {G. M. Henkin and A. A. Shananin},
     title = {Cauchy--Gelfand {Problem} and the {Inverse} {Problem} for a {First-Order} {Quasilinear} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/}
}
TY  - JOUR
AU  - G. M. Henkin
AU  - A. A. Shananin
TI  - Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 61
EP  - 74
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/
LA  - ru
ID  - FAA_2016_50_2_a3
ER  - 
%0 Journal Article
%A G. M. Henkin
%A A. A. Shananin
%T Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 61-74
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/
%G ru
%F FAA_2016_50_2_a3
G. M. Henkin; A. A. Shananin. Cauchy--Gelfand Problem and the Inverse Problem for a First-Order Quasilinear Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 61-74. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a3/

[1] B. Riemann, “Ueber die Fortpflanrung eberner Luftwellen von endlicher Schwingungswate”, Goettengen Abh. Math., 8 (1860), 43–65

[2] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[3] E. Hopf, “Generalized solutions of non-linear equations of first order”, J. Math. Mech., 14:6 (1965), 951–973 | MR | Zbl

[4] I. M. Gelfand, “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl

[5] O. A. Oleinik, “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2 (1959), 165–170 | MR | Zbl

[6] O. A. Oleinik, “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, UMN, 12:3 (1957), 3–73 | MR | Zbl

[7] O. A. Ladyzhenskaya, “O postroenii razryvnykh reshenii kvazilineinykh uravnenii kak predelov reshenii sootvetstvuyuschikh parabolicheskikh uravnenii pri stremlenii «koeffitsienta vyazkosti» k nulyu”, Dokl. AN SSSR, 111:2 (1956), 291–294 | MR | Zbl

[8] S. N. Kruzhkov, “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl

[9] S. N. Kruzhkov, Nelineinye uravneniya s chastnymi proizvodnymi, ch. 2, Izd-vo MGU, M., 1970

[10] S. N. Kruzhkov, N. S. Petrosyan, “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nelineinykh uravnenii pervogo poryadka”, UMN, 42:5 (1987), 3–40 | MR | Zbl

[11] M. Bardi, L. C. Evans, “On Hopf's formulas for solution of Hamilton–Jacobi equations”, Nonlinear Anal., 8:11 (1984), 1373–1381 | DOI | MR | Zbl

[12] N. S. Petrosyan, “Ob asimptotike resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s nevypukloi funktsiei sostoyaniya”, UMN, 38:2 (1983), 213–214 | MR | Zbl

[13] N. S. Petrosyan, Ob asimptotike pri bolshikh znacheniyakh vremeni resheniya zadachi Koshi dlya kvazilineinogo zakona sokhraneniya s nevypukloi funktsiei potoka, Deponirovana v VINITI, rukopis 1144-V97, 1997

[14] G. Jennings, “Piecewise smooth solutions of a single conservation law exist”, Adv. Math., 33:2 (1979), 192–205 | DOI | MR | Zbl

[15] G. M. Henkin, A. A. Shananin, “Cauchy–Gelfand problem for quasilinear conservation law”, Bull. Sci. Math., 138:7 (2014), 783–804 | DOI | MR | Zbl

[16] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Volny i struktury v nelineinykh sredakh bez dispersii, Fizmatlit, M., 2008

[17] A. M. Ilin, O. A. Oleinik, “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51:2 (1960), 191–216 | MR | Zbl

[18] Ya. B. Zeldovich, “Gravitational instability: an approximate theory for large density perturbation”, Astron. Astrophys., 5 (1970), 84–89

[19] U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski, “A reconstruction of initial condition of the Universe by optimal mass transportation”, Nature, 417, 16 May (2002), 260–262 | DOI

[20] G. M. Henkin, A. A. Shananin, “Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations”, J. Math. Pures Appl., 83:12 (2004), 1457–1500 | DOI | MR | Zbl

[21] G. M. Henkin, A. E. Tumanov, A. A. Shananin, “Estimates for solution of Burgers type equations and some applications”, J. Math. Pures Appl., 84:6 (2005), 717–752 | DOI | MR | Zbl

[22] G. M. Henkin, “Asymptotic structure for solution of the Cauchy problems for Burgers type equations”, J. Fixed Point Theory Appl., 1:2 (2007), 239–291 | DOI | MR | Zbl

[23] S. Angenent, “The zero set of a solution of a parabolic equation”, J. Reine Angew. Math., 390 (1988), 79–96 | MR | Zbl

[24] G. M. Henkin, “Burgers type equations, Gelfand's problem and Schumpeterian dynamics”, J. Fixed Point Theory Appl., 11:2 (2012), 199–223 | DOI | MR | Zbl