Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_2_a2, author = {G. I. Olshanskii}, title = {Extended {Gelfand--Tsetlin} {Graph,} {Its} $q${-Boundary,} and $q${-B-Splines}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {31--60}, publisher = {mathdoc}, volume = {50}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a2/} }
G. I. Olshanskii. Extended Gelfand--Tsetlin Graph, Its $q$-Boundary, and $q$-B-Splines. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 31-60. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a2/
[1] C. de Boor, “Divided differences”, Surv. Approx. Theory, 1 (2005), 46–69, arXiv: math/0502036 | MR | Zbl
[2] A. Borodin, I. Corwin, “Macdonald processes”, Probab. Theory Related Fields, 158:1–2 (2014), 225–400 | DOI | MR | Zbl
[3] A. Borodin, V. Gorin, “Markov processes of infinitely many nonintersecting random walks”, Probab. Theory Related Fields, 155:3–4 (2013), 935–997, arXiv: 1106.1299 | DOI | MR | Zbl
[4] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl
[5] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics (Stockholm, Sweden, June 27–July 2, 2004), Eur. Math. Soc., Zürich, 2005, 73–94 | MR | Zbl
[6] A. Borodin, G. Olshanski, “Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary”, J. Funct. Anal., 263 (2012), 248–303, arXiv: 1009.2029 | DOI | MR | Zbl
[7] A. Borodin, G. Olshanski, “The boundary of the Gelfand–Tsetlin graph: A new approach”, Adv. Math., 230:4–6 (2012), 1738–1779, arXiv: 1109.1412 | DOI | MR | Zbl
[8] G. Budakçi, Ç. Dişibüyük, R. Goldman, H. Oruç, “Extending fundamental formulas from classical B-splines to quantum B-splines”, J. Comput. Appl. Math., 282 (2015), 17–33 | DOI | MR | Zbl
[9] H. B. Curry, I. J. Schoenberg, “On Pólya frequency functions IV: The spline functions and their limits”, Bull. Amer. Math. Soc., 53:11 (1947), 1114 | MR
[10] H. B. Curry, I. J. Schoenberg, “On Pólya frequency functions IV: the fundamental spline functions and their limits”, J. Analyse Math., 17 (1966), 71–107 | DOI | MR | Zbl
[11] J. Faraut, “Noyau de Peano et intégrales orbitales”, J. Pure Appl. Math., 1:3 (2005), 306–320 | MR | Zbl
[12] J. Faraut, “Rayleigh theorem, projection of orbital measures, and spline functions”, Adv. Pure Appl. Math., 6:4 (2015), 261–283 | DOI | MR | Zbl
[13] E. B. Dynkin, “Sufficient statistics and extreme points”, Ann. Probab., 6:5 (1978), 705–730 | DOI | MR | Zbl
[14] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[15] V. Gorin, “The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices”, Adv. Math., 229:1 (2012), 201–266, arXiv: 1011.1769 | DOI | MR | Zbl
[16] V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418, arXiv: 1504.06832 | DOI | MR | Zbl
[17] W. Hahn, “Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation”, Math. Nachr., 2 (1949), 340–379 | DOI | MR | Zbl
[18] A. Kechris, Classical Descriptive Set Theory, Springer–Verlag, New York, 1995 | MR | Zbl
[19] I. G. Macdonald, Symmetric Functions and Hall Polynomials, The Clarendon Press, Oxford University Press, New York, 1995 | MR
[20] P.-A. Meyer, Probability and Potentials, Blaisdell Publ. Co., Waltham, Mass.–Totonto–London, 1966 | MR | Zbl
[21] A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Internat. Math. Res. Notices, 13 (1998), 641–682 | DOI | MR | Zbl
[22] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: math/0109193 | DOI | MR | Zbl
[23] G. Olshanski, “Projections of orbital measures, Gelfand–Tsetlin polytopes, and splines”, J. Lie Theory, 23:4 (2013), 1011–1022 | MR | Zbl
[24] G. Olshanski, “The Gelfand-Tsetlin graph and Markov processes (extended version of talk at ICM–2014, Seoul)”, Proc. Intern. Congress of Math., v. IV, Kyung Moon Sa, Seoul, 2014, 431–454, arXiv: 1404.3646 | MR
[25] G. Olshanski, “Markov dynamics on the dual object to the infinite-dimensional unitary group”, Proc. Symposia in Pure Mathematics, Amer. Math. Soc., 2016 (to appear) , arXiv: 1310.6155 | MR | Zbl
[26] G. Olshanski, A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary Mathematical Physics. F. A. Berezin's memorial volume, Amer. Math. Soc. Transl., Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 137–175 | MR | Zbl
[27] L. Petrov, “The boundary of the Gelfand–Tsetlin graph: New proof of Borodin–Olshanski's formula, and its q-analogue”, Mosc. Math. J., 14:1 (2014), 121–160, arXiv: 1208.3443 | DOI | MR | Zbl
[28] J. M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003 | MR | Zbl
[29] I. J. Schoenberg, “On totally positive functions, Laplace integrals and entire functions of the Laguerre–Pólya–Schur type”, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 11–17 | DOI | MR | Zbl
[30] I. J. Schoenberg, “On Pólya frequency functions I: The totally positive functions and their Laplace transforms”, J. Analyse Math., 1 (1951), 331–374 | DOI | MR | Zbl
[31] P. Simeonov, R. Goldman, “Quantum B-splines”, BIT Numerical Mathematics, 53:1 (2013), 93–223 | DOI | MR