Extended Gelfand--Tsetlin Graph, Its $q$-Boundary, and $q$-B-Splines
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 31-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary of the Gelfand–Tsetlin graph is an infinite-dimensional locally compact space whose points parameterize the extreme characters of the infinite-dimensional group $U(\infty)$. The problem of harmonic analysis on the group $U(\infty)$ leads to a continuous family of probability measures on the boundary—the so-called zw-measures. Recently Vadim Gorin and the author have begun to study a $q$-analogue of the zw-measures. It turned out that constructing them requires introducing a novel combinatorial object, the extended Gelfand–Tsetlin graph. In the present paper it is proved that the Markov kernels connected with the extended Gelfand–Tsetlin graph and its $q$-boundary possess the Feller property. This property is needed for constructing a Markov dynamics on the $q$-boundary. A connection with the B-splines and their $q$-analogues is also discussed.
Keywords: Gelfand–Tsetlin graph, Feller property, B-splines.
Mots-clés : Markov kernels
@article{FAA_2016_50_2_a2,
     author = {G. I. Olshanskii},
     title = {Extended {Gelfand--Tsetlin} {Graph,} {Its} $q${-Boundary,} and $q${-B-Splines}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--60},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a2/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Extended Gelfand--Tsetlin Graph, Its $q$-Boundary, and $q$-B-Splines
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 31
EP  - 60
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a2/
LA  - ru
ID  - FAA_2016_50_2_a2
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Extended Gelfand--Tsetlin Graph, Its $q$-Boundary, and $q$-B-Splines
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 31-60
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a2/
%G ru
%F FAA_2016_50_2_a2
G. I. Olshanskii. Extended Gelfand--Tsetlin Graph, Its $q$-Boundary, and $q$-B-Splines. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 31-60. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a2/

[1] C. de Boor, “Divided differences”, Surv. Approx. Theory, 1 (2005), 46–69, arXiv: math/0502036 | MR | Zbl

[2] A. Borodin, I. Corwin, “Macdonald processes”, Probab. Theory Related Fields, 158:1–2 (2014), 225–400 | DOI | MR | Zbl

[3] A. Borodin, V. Gorin, “Markov processes of infinitely many nonintersecting random walks”, Probab. Theory Related Fields, 155:3–4 (2013), 935–997, arXiv: 1106.1299 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics (Stockholm, Sweden, June 27–July 2, 2004), Eur. Math. Soc., Zürich, 2005, 73–94 | MR | Zbl

[6] A. Borodin, G. Olshanski, “Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary”, J. Funct. Anal., 263 (2012), 248–303, arXiv: 1009.2029 | DOI | MR | Zbl

[7] A. Borodin, G. Olshanski, “The boundary of the Gelfand–Tsetlin graph: A new approach”, Adv. Math., 230:4–6 (2012), 1738–1779, arXiv: 1109.1412 | DOI | MR | Zbl

[8] G. Budakçi, Ç. Dişibüyük, R. Goldman, H. Oruç, “Extending fundamental formulas from classical B-splines to quantum B-splines”, J. Comput. Appl. Math., 282 (2015), 17–33 | DOI | MR | Zbl

[9] H. B. Curry, I. J. Schoenberg, “On Pólya frequency functions IV: The spline functions and their limits”, Bull. Amer. Math. Soc., 53:11 (1947), 1114 | MR

[10] H. B. Curry, I. J. Schoenberg, “On Pólya frequency functions IV: the fundamental spline functions and their limits”, J. Analyse Math., 17 (1966), 71–107 | DOI | MR | Zbl

[11] J. Faraut, “Noyau de Peano et intégrales orbitales”, J. Pure Appl. Math., 1:3 (2005), 306–320 | MR | Zbl

[12] J. Faraut, “Rayleigh theorem, projection of orbital measures, and spline functions”, Adv. Pure Appl. Math., 6:4 (2015), 261–283 | DOI | MR | Zbl

[13] E. B. Dynkin, “Sufficient statistics and extreme points”, Ann. Probab., 6:5 (1978), 705–730 | DOI | MR | Zbl

[14] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[15] V. Gorin, “The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices”, Adv. Math., 229:1 (2012), 201–266, arXiv: 1011.1769 | DOI | MR | Zbl

[16] V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418, arXiv: 1504.06832 | DOI | MR | Zbl

[17] W. Hahn, “Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation”, Math. Nachr., 2 (1949), 340–379 | DOI | MR | Zbl

[18] A. Kechris, Classical Descriptive Set Theory, Springer–Verlag, New York, 1995 | MR | Zbl

[19] I. G. Macdonald, Symmetric Functions and Hall Polynomials, The Clarendon Press, Oxford University Press, New York, 1995 | MR

[20] P.-A. Meyer, Probability and Potentials, Blaisdell Publ. Co., Waltham, Mass.–Totonto–London, 1966 | MR | Zbl

[21] A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Internat. Math. Res. Notices, 13 (1998), 641–682 | DOI | MR | Zbl

[22] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: math/0109193 | DOI | MR | Zbl

[23] G. Olshanski, “Projections of orbital measures, Gelfand–Tsetlin polytopes, and splines”, J. Lie Theory, 23:4 (2013), 1011–1022 | MR | Zbl

[24] G. Olshanski, “The Gelfand-Tsetlin graph and Markov processes (extended version of talk at ICM–2014, Seoul)”, Proc. Intern. Congress of Math., v. IV, Kyung Moon Sa, Seoul, 2014, 431–454, arXiv: 1404.3646 | MR

[25] G. Olshanski, “Markov dynamics on the dual object to the infinite-dimensional unitary group”, Proc. Symposia in Pure Mathematics, Amer. Math. Soc., 2016 (to appear) , arXiv: 1310.6155 | MR | Zbl

[26] G. Olshanski, A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary Mathematical Physics. F. A. Berezin's memorial volume, Amer. Math. Soc. Transl., Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 137–175 | MR | Zbl

[27] L. Petrov, “The boundary of the Gelfand–Tsetlin graph: New proof of Borodin–Olshanski's formula, and its q-analogue”, Mosc. Math. J., 14:1 (2014), 121–160, arXiv: 1208.3443 | DOI | MR | Zbl

[28] J. M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003 | MR | Zbl

[29] I. J. Schoenberg, “On totally positive functions, Laplace integrals and entire functions of the Laguerre–Pólya–Schur type”, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 11–17 | DOI | MR | Zbl

[30] I. J. Schoenberg, “On Pólya frequency functions I: The totally positive functions and their Laplace transforms”, J. Analyse Math., 1 (1951), 331–374 | DOI | MR | Zbl

[31] P. Simeonov, R. Goldman, “Quantum B-splines”, BIT Numerical Mathematics, 53:1 (2013), 93–223 | DOI | MR