Brion's Theorem for Gelfand--Tsetlin Polytopes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is motivated by the observation that the character of an irreducible $\mathfrak{gl}_n$-module (a Schur polynomial), being the sum of exponentials of integer points in a Gelfand–Tsetlin polytope, can be expressed by using Brion's theorem. The main result is that, in the case of a regular highest weight, the contributions of all nonsimplicial vertices vanish, while the number of simplicial vertices is $n!$ and the contributions of these vertices are precisely the summands in Weyl's character formula.
Keywords: Gelfand–Tsetlin polytopes, Brion's theorem, Schur polynomials, general linear Lie algebra.
@article{FAA_2016_50_2_a1,
     author = {I. Yu. Makhlin},
     title = {Brion's {Theorem} for {Gelfand--Tsetlin} {Polytopes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a1/}
}
TY  - JOUR
AU  - I. Yu. Makhlin
TI  - Brion's Theorem for Gelfand--Tsetlin Polytopes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 20
EP  - 30
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a1/
LA  - ru
ID  - FAA_2016_50_2_a1
ER  - 
%0 Journal Article
%A I. Yu. Makhlin
%T Brion's Theorem for Gelfand--Tsetlin Polytopes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 20-30
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a1/
%G ru
%F FAA_2016_50_2_a1
I. Yu. Makhlin. Brion's Theorem for Gelfand--Tsetlin Polytopes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 20-30. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a1/

[1] M. Brion, “Points entiers dans les polyèdres convexes”, Ann. Sci. École Norm. Sup., 21:4 (1988), 653–663 | DOI | MR | Zbl

[2] A. V. Pukhlikov, A. G. Khovanskii, “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR

[3] A. I. Barvinok, Integer Points in Polyhedra, European Math. Society (EMS), Zürich, 2008 | MR | Zbl

[4] M. Beck, S. Robins, Computing the Continuous Discretely, Springer-Verlag, New York, 2007 | MR | Zbl

[5] V. A. Kirichenko, E. Yu. Smirnov, V. A. Timorin, “Ischislenie Shuberta i mnogogranniki Gelfanda–Tsetlina”, UMN, 67:4(406) (2012), 89–128 | DOI | MR | Zbl

[6] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NY, 1993 | MR | Zbl