Brion's Theorem for Gelfand–Tsetlin Polytopes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 20-30
Cet article a éte moissonné depuis la source Math-Net.Ru
This work is motivated by the observation that the character of an irreducible $\mathfrak{gl}_n$-module (a Schur polynomial), being the sum of exponentials of integer points in a Gelfand–Tsetlin polytope, can be expressed by using Brion's theorem. The main result is that, in the case of a regular highest weight, the contributions of all nonsimplicial vertices vanish, while the number of simplicial vertices is $n!$ and the contributions of these vertices are precisely the summands in Weyl's character formula.
Keywords:
Gelfand–Tsetlin polytopes, Brion's theorem, Schur polynomials, general linear Lie algebra.
@article{FAA_2016_50_2_a1,
author = {I. Yu. Makhlin},
title = {Brion's {Theorem} for {Gelfand{\textendash}Tsetlin} {Polytopes}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {20--30},
year = {2016},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a1/}
}
I. Yu. Makhlin. Brion's Theorem for Gelfand–Tsetlin Polytopes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 20-30. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a1/
[1] M. Brion, “Points entiers dans les polyèdres convexes”, Ann. Sci. École Norm. Sup., 21:4 (1988), 653–663 | DOI | MR | Zbl
[2] A. V. Pukhlikov, A. G. Khovanskii, “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR
[3] A. I. Barvinok, Integer Points in Polyhedra, European Math. Society (EMS), Zürich, 2008 | MR | Zbl
[4] M. Beck, S. Robins, Computing the Continuous Discretely, Springer-Verlag, New York, 2007 | MR | Zbl
[5] V. A. Kirichenko, E. Yu. Smirnov, V. A. Timorin, “Ischislenie Shuberta i mnogogranniki Gelfanda–Tsetlina”, UMN, 67:4(406) (2012), 89–128 | DOI | MR | Zbl
[6] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NY, 1993 | MR | Zbl