Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_1_a8, author = {N. N. Senik}, title = {On {Homogenization} for {Non-Self-Adjoint} {Periodic} {Elliptic} {Operators} on an {Infinite} {Cylinder}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {85--89}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/} }
TY - JOUR AU - N. N. Senik TI - On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2016 SP - 85 EP - 89 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/ LA - ru ID - FAA_2016_50_1_a8 ER -
N. N. Senik. On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 85-89. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/
[1] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104 | MR
[2] S. E. Pastukhova, Matem. zametki, 94:1 (2013), 130–150 | DOI | MR | Zbl
[3] N. N. Senik, Algebra i analiz, 25:4 (2013), 182–259 | MR
[4] N. N. Senik, arXiv: 1508.04963
[5] T. A. Suslina, Algebra i analiz, 16:1 (2004), 269–292 | MR | Zbl
[6] T. A. Suslina, Algebra i analiz, 26:4 (2014), 195–263 | MR