On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 85-89
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an operator $\mathcal{A}^{\varepsilon}$ on $L_{2}(\mathbb{R}^{d_{1}}\times\mathbb{T}^{d_{2}})$ ($d_{1}$ is positive, while $d_{2}$ can be zero) given by $\mathcal{A}^{\varepsilon}=-\operatorname{div} A(\varepsilon^{-1}x_{1},x_{2})\nabla$, where $A$ is periodic in the first variable and smooth in a sense in the second. We present approximations for $(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ and $\nabla(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ (with appropriate $\mu$) in the operator norm when $\varepsilon$ is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.
Keywords:
homogenization, operator error estimates, periodic differential operators, effective operator, corrector.
@article{FAA_2016_50_1_a8,
author = {N. N. Senik},
title = {On {Homogenization} for {Non-Self-Adjoint} {Periodic} {Elliptic} {Operators} on an {Infinite} {Cylinder}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--89},
year = {2016},
volume = {50},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/}
}
N. N. Senik. On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 85-89. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/
[1] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104 | MR
[2] S. E. Pastukhova, Matem. zametki, 94:1 (2013), 130–150 | DOI | MR | Zbl
[3] N. N. Senik, Algebra i analiz, 25:4 (2013), 182–259 | MR
[4] N. N. Senik, arXiv: 1508.04963
[5] T. A. Suslina, Algebra i analiz, 16:1 (2004), 269–292 | MR | Zbl
[6] T. A. Suslina, Algebra i analiz, 26:4 (2014), 195–263 | MR