On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 85-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an operator $\mathcal{A}^{\varepsilon}$ on $L_{2}(\mathbb{R}^{d_{1}}\times\mathbb{T}^{d_{2}})$ ($d_{1}$ is positive, while $d_{2}$ can be zero) given by $\mathcal{A}^{\varepsilon}=-\operatorname{div} A(\varepsilon^{-1}x_{1},x_{2})\nabla$, where $A$ is periodic in the first variable and smooth in a sense in the second. We present approximations for $(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ and $\nabla(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ (with appropriate $\mu$) in the operator norm when $\varepsilon$ is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.
Keywords: homogenization, operator error estimates, periodic differential operators, effective operator, corrector.
@article{FAA_2016_50_1_a8,
     author = {N. N. Senik},
     title = {On {Homogenization} for {Non-Self-Adjoint} {Periodic} {Elliptic} {Operators} on an {Infinite} {Cylinder}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--89},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/}
}
TY  - JOUR
AU  - N. N. Senik
TI  - On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 85
EP  - 89
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/
LA  - ru
ID  - FAA_2016_50_1_a8
ER  - 
%0 Journal Article
%A N. N. Senik
%T On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 85-89
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/
%G ru
%F FAA_2016_50_1_a8
N. N. Senik. On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 85-89. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a8/

[1] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104 | MR

[2] S. E. Pastukhova, Matem. zametki, 94:1 (2013), 130–150 | DOI | MR | Zbl

[3] N. N. Senik, Algebra i analiz, 25:4 (2013), 182–259 | MR

[4] N. N. Senik, arXiv: 1508.04963

[5] T. A. Suslina, Algebra i analiz, 16:1 (2004), 269–292 | MR | Zbl

[6] T. A. Suslina, Algebra i analiz, 26:4 (2014), 195–263 | MR