The Strong Suslin Reciprocity Law and Its Applications to Scissor Congruence Theory in Hyperbolic Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the strong Suslin reciprocity law conjectured by A. B. Goncharov and describe its corollaries for the theory of scissor congruence of polyhedra in hyperbolic space. The proof is based on the study of Goncharov's conjectural description of certain rational motivic cohomology groups of a field. Our main result is a homotopy invariance theorem for these groups.
Keywords: scissor congruence, reciprocity laws, motivic cohomology
Mots-clés : polylogarithms.
@article{FAA_2016_50_1_a7,
     author = {D. Rudenko},
     title = {The {Strong} {Suslin} {Reciprocity} {Law} and {Its} {Applications} to {Scissor} {Congruence} {Theory} in {Hyperbolic} {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--84},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a7/}
}
TY  - JOUR
AU  - D. Rudenko
TI  - The Strong Suslin Reciprocity Law and Its Applications to Scissor Congruence Theory in Hyperbolic Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 79
EP  - 84
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a7/
LA  - ru
ID  - FAA_2016_50_1_a7
ER  - 
%0 Journal Article
%A D. Rudenko
%T The Strong Suslin Reciprocity Law and Its Applications to Scissor Congruence Theory in Hyperbolic Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 79-84
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a7/
%G ru
%F FAA_2016_50_1_a7
D. Rudenko. The Strong Suslin Reciprocity Law and Its Applications to Scissor Congruence Theory in Hyperbolic Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 79-84. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a7/

[1] A. A. Beilinson, P. Deligne, Motives, Proc. Symp. Pure Math., 55, part 2, Amer. Math. Soc., Providence, RI, 1994, 97–121 | DOI | MR | Zbl

[2] J. L. Dupont, Osaka J. Math., 19:3 (1982), 599–641 | MR

[3] A. B. Goncharov, J. Amer. Math. Soc., 18:1 (2005), 1–60 | DOI | MR | Zbl

[4] A. B. Goncharov, Proc. Sympos. Pure Math., 55, part 2, Amer. Math. Soc., Providence, RI, 1994, 43–96 | DOI | MR | Zbl

[5] A. Suslin, V. Voevodsky, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl

[6] A. A. Suslin, Izv. AN SSSR, ser. matem., 43:6 (1979), 1394–1429 | MR | Zbl

[7] A. A. Suslin, Teoriya Galua, koltsa, algebraicheskie gruppy i ikh prilozheniya, Trudy MIAN, 183, Nauka, Leningradskoe otd., L., 1990, 180–199 | MR