Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 59-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for any $E^u \oplus E^{cs}$ partially hyperbolic $C^2$ diffeomorphism, the $\omega$-limit set of a generic (with respect to the Lebesgue measure) point is a union of unstable leaves. As a corollary, we prove a conjecture made by Ilyashenko in his 2011 paper that the Milnor attractor is a union of unstable leaves. In the paper mentioned above, Ilyashenko reduced the local generecity of the existence of a “thick” Milnor attractor in the class of boundary-preserving diffeomorphisms of the product of the interval and the 2-torus to this conjecture.
Keywords: attractors, partial hyperbolicity.
@article{FAA_2016_50_1_a4,
     author = {S. S. Minkov and A. V. Okunev},
     title = {Omega-Limit {Sets} of {Generic} {Points} of {Partially} {Hyperbolic} {Diffeomorphisms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/}
}
TY  - JOUR
AU  - S. S. Minkov
AU  - A. V. Okunev
TI  - Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 59
EP  - 66
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/
LA  - ru
ID  - FAA_2016_50_1_a4
ER  - 
%0 Journal Article
%A S. S. Minkov
%A A. V. Okunev
%T Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 59-66
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/
%G ru
%F FAA_2016_50_1_a4
S. S. Minkov; A. V. Okunev. Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/