Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_1_a4, author = {S. S. Minkov and A. V. Okunev}, title = {Omega-Limit {Sets} of {Generic} {Points} of {Partially} {Hyperbolic} {Diffeomorphisms}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {59--66}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/} }
TY - JOUR AU - S. S. Minkov AU - A. V. Okunev TI - Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2016 SP - 59 EP - 66 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/ LA - ru ID - FAA_2016_50_1_a4 ER -
S. S. Minkov; A. V. Okunev. Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/
[1] L. Barreira, Ya. B. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[2] C. Bonatti, L. J. Diaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective, Springer-Verlag, Berlin, 2005 | MR | Zbl
[3] Yu. S. Ilyashenko, “Thick attractors of boundary preserving diffeomorphisms”, Indag. Math., 22:3–4 (2011), 257–314 | DOI | MR | Zbl
[4] Yu. G. Kudryashov, Bony attractors in higher dimensions, arXiv: 1305.3889v1 | MR
[5] J. Milnor, “Fubini foiled: Katok's paradoxical example in measure theory”, Math. Intelligencer, 19:2 (1997), 30–32 | DOI | MR | Zbl
[6] C. A. Morales, M. J. Pacifico, “Lyapunov stability of $\omega$-limit sets”, Discrete Contin. Dyn. Syst., Ser. A, 8:3 (2002), 671–674 | DOI | MR | Zbl
[7] C. Pugh, M. Viana, A. Wilkinson, Absolute continuity of foliations http://w3.impa.br/~viana/out/pvw.pdf
[8] M. Shub, A. Wilkinson, “Pathological foliations and removable zero exponents”, Invent. Math., 139:3 (2000), 495–508 | DOI | MR | Zbl
[9] V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, L. P. Shilnikov, “Teoriya bifurkatsii”, Dinamicheskie sistemy–5, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986 | MR | Zbl
[10] Ya. B. Pesin, Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006