Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for any $E^u \oplus E^{cs}$ partially hyperbolic $C^2$ diffeomorphism, the $\omega$-limit set of a generic (with respect to the Lebesgue measure) point is a union of unstable leaves. As a corollary, we prove a conjecture made by Ilyashenko in his 2011 paper that the Milnor attractor is a union of unstable leaves. In the paper mentioned above, Ilyashenko reduced the local generecity of the existence of a “thick” Milnor attractor in the class of boundary-preserving diffeomorphisms of the product of the interval and the 2-torus to this conjecture.
Keywords: attractors, partial hyperbolicity.
@article{FAA_2016_50_1_a4,
     author = {S. S. Minkov and A. V. Okunev},
     title = {Omega-Limit {Sets} of {Generic} {Points} of {Partially} {Hyperbolic} {Diffeomorphisms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/}
}
TY  - JOUR
AU  - S. S. Minkov
AU  - A. V. Okunev
TI  - Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 59
EP  - 66
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/
LA  - ru
ID  - FAA_2016_50_1_a4
ER  - 
%0 Journal Article
%A S. S. Minkov
%A A. V. Okunev
%T Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 59-66
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/
%G ru
%F FAA_2016_50_1_a4
S. S. Minkov; A. V. Okunev. Omega-Limit Sets of Generic Points of Partially Hyperbolic Diffeomorphisms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a4/

[1] L. Barreira, Ya. B. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[2] C. Bonatti, L. J. Diaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective, Springer-Verlag, Berlin, 2005 | MR | Zbl

[3] Yu. S. Ilyashenko, “Thick attractors of boundary preserving diffeomorphisms”, Indag. Math., 22:3–4 (2011), 257–314 | DOI | MR | Zbl

[4] Yu. G. Kudryashov, Bony attractors in higher dimensions, arXiv: 1305.3889v1 | MR

[5] J. Milnor, “Fubini foiled: Katok's paradoxical example in measure theory”, Math. Intelligencer, 19:2 (1997), 30–32 | DOI | MR | Zbl

[6] C. A. Morales, M. J. Pacifico, “Lyapunov stability of $\omega$-limit sets”, Discrete Contin. Dyn. Syst., Ser. A, 8:3 (2002), 671–674 | DOI | MR | Zbl

[7] C. Pugh, M. Viana, A. Wilkinson, Absolute continuity of foliations http://w3.impa.br/~viana/out/pvw.pdf

[8] M. Shub, A. Wilkinson, “Pathological foliations and removable zero exponents”, Invent. Math., 139:3 (2000), 495–508 | DOI | MR | Zbl

[9] V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, L. P. Shilnikov, “Teoriya bifurkatsii”, Dinamicheskie sistemy–5, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986 | MR | Zbl

[10] Ya. B. Pesin, Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006