Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_1_a3, author = {Qihui Li and Don Hadwin and Jiankui Li and Xiujuan Ma and Junhao Shen}, title = {On {Unital} {Full} {Amalgamated} {Free} {Products} of {Quasidiagonal} $C^*${-Algebras}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {47--58}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/} }
TY - JOUR AU - Qihui Li AU - Don Hadwin AU - Jiankui Li AU - Xiujuan Ma AU - Junhao Shen TI - On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2016 SP - 47 EP - 58 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/ LA - ru ID - FAA_2016_50_1_a3 ER -
%0 Journal Article %A Qihui Li %A Don Hadwin %A Jiankui Li %A Xiujuan Ma %A Junhao Shen %T On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras %J Funkcionalʹnyj analiz i ego priloženiâ %D 2016 %P 47-58 %V 50 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/ %G ru %F FAA_2016_50_1_a3
Qihui Li; Don Hadwin; Jiankui Li; Xiujuan Ma; Junhao Shen. On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/
[1] S. Armstrong, K. Dykema, R. Exel, H. Li, “On embeddings of full amalgamated free product $C^*$-algebras”, Proc. Amer. Math. Soc., 132:7 (2004), 2019–2030 | DOI | MR | Zbl
[2] F. Boca, “A note on full free product $C^*$-algebras, lifting and quasidiagonality”, Operator Algebras and Related Topics, Proceedings of the 16th Operator Theory Conference (Timişoara, 1996), Theta Found., Bucharest, 1997, 51–63 | MR | Zbl
[3] N. P. Brown, K. J. Dykema, “Popa algebras in free group factors”, J. Reine Angew. Math., 573 (2004), 157–180 | MR | Zbl
[4] F. Boca, “Completely positive maps on amalgamated product $C^*$-algebras”, Math. Scand., 72:2 (1993), 212–222 | DOI | MR | Zbl
[5] B. Blackadar, E. Kirchberg, “Generalized inductive limits of finite-dimensional $C^*$-algebras”, Math. Ann., 307:3 (1997), 343–380 | DOI | MR | Zbl
[6] N. P. Brown, “On quasidiagonal $C^*$-algebras”, Operator Algebras and Applications, Advanced Studies in Pure Math., 38, Math. Soc. Japan, Tokyo, 2004, 19–64 | DOI | MR | Zbl
[7] N. P. Brown, N. Ozawa, $C^*$-Algebras and Finite-Dimensional Approximations, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[8] K. Davidson, $C^*$-Algebras by Example, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[9] R. Exel, T. Loring, “Finite-dimensional representations of free product $C$-algebras”, Internat. J. Math., 3:4 (1992), 469–476 | DOI | MR | Zbl
[10] D. Hadwin, “Nonseparable approximate equivalence”, Trans. Amer. Math. Soc., 266:1 (1981), 203–231 | DOI | MR | Zbl
[11] D. Hadwin, “A lifting characterization of RFD $C^*$-algebras”, Math. Scand., 115:1 (2014), 85–95 | DOI | MR | Zbl
[12] D. Hadwin, Q. Li, J. Shen, “Topological free entropy dimensions in nuclear $C^*$-algebras and in full free products of unital $C^*$-algebras”, Canad. J. Math., 63 (2011), 511–590 | DOI | MR
[13] U. Haagerup, S. Thorbjørnsen, “A new application of random matrices: $\operatorname{Ext}(C_{\mathrm{red}}^{\ast}(F_{2}))$ is not a group”, Ann. of Math. (2), 162:2 (2005), 711–775 | DOI | MR | Zbl
[14] R. Kadison, J. Ringrose, Fundamentals of the Operator Algebras, v. 1, Academic Press, Orlando, FL, 1983 ; Fundamentals of the Operator Algebras, v. 2, Academic Press, Orlando, FL, 1986 | MR | Zbl | Zbl
[15] Q. Li, J. Shen, “A note on unital full amalgamated free products of RFD $C^*$-algebras”, Illinois J. Math, 56:2, 647–659 | MR | Zbl
[16] Q. Li, J. Shen, “Unital full amalgamated free products of MF $C^*$-algebras”, Oper. Matrices, 7:2 (2013), 333–356 | MR
[17] T. Loring, Lifting Solutions to Perturbing Problems in $C$-algebras, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[18] G. K. Pedersen, “Pullback and pushout constructions in $C^*$-algebra theory”, J. Funct. Anal., 167:2 (1999), 243–344 | DOI | MR | Zbl
[19] D. Voiculescu, “A note on quasi-diagonal $C^*$-algebras and homotopy”, Duke Math. J., 62:2 (1991), 267–271 | DOI | MR | Zbl
[20] D. Voiculescu, “Around quasidiagonal operators”, Integral Equations Operator Theory, 17:1 (1993), 137–149 | DOI | MR | Zbl