On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider the question as to whether a unital full amalgamated free product of quasidiagonal $C^*$-algebras is itself quasidiagonal. We give a sufficient condition for a unital full amalgamated free product of quasidiagonal $C^*$-algebras with amalgamation over a finite-dimensional $C^*$-algebra to be quasidiagonal. By applying this result, we conclude that the unital full free product of two AF algebras with amalgamation over a finite-dimensional $C^*$-algebra is AF if there exists a faithful tracial state on each of the two AF algebras such that the restrictions of these states to the common subalgebra coincide.
Mots-clés : quasidiagonal $C^*$-algebra
Keywords: unital full amalgamated free product of $C^*$-algebras.
@article{FAA_2016_50_1_a3,
     author = {Qihui Li and Don Hadwin and Jiankui Li and Xiujuan Ma and Junhao Shen},
     title = {On {Unital} {Full} {Amalgamated} {Free} {Products} of {Quasidiagonal} $C^*${-Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/}
}
TY  - JOUR
AU  - Qihui Li
AU  - Don Hadwin
AU  - Jiankui Li
AU  - Xiujuan Ma
AU  - Junhao Shen
TI  - On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 47
EP  - 58
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/
LA  - ru
ID  - FAA_2016_50_1_a3
ER  - 
%0 Journal Article
%A Qihui Li
%A Don Hadwin
%A Jiankui Li
%A Xiujuan Ma
%A Junhao Shen
%T On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 47-58
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/
%G ru
%F FAA_2016_50_1_a3
Qihui Li; Don Hadwin; Jiankui Li; Xiujuan Ma; Junhao Shen. On Unital Full Amalgamated Free Products of Quasidiagonal $C^*$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a3/

[1] S. Armstrong, K. Dykema, R. Exel, H. Li, “On embeddings of full amalgamated free product $C^*$-algebras”, Proc. Amer. Math. Soc., 132:7 (2004), 2019–2030 | DOI | MR | Zbl

[2] F. Boca, “A note on full free product $C^*$-algebras, lifting and quasidiagonality”, Operator Algebras and Related Topics, Proceedings of the 16th Operator Theory Conference (Timişoara, 1996), Theta Found., Bucharest, 1997, 51–63 | MR | Zbl

[3] N. P. Brown, K. J. Dykema, “Popa algebras in free group factors”, J. Reine Angew. Math., 573 (2004), 157–180 | MR | Zbl

[4] F. Boca, “Completely positive maps on amalgamated product $C^*$-algebras”, Math. Scand., 72:2 (1993), 212–222 | DOI | MR | Zbl

[5] B. Blackadar, E. Kirchberg, “Generalized inductive limits of finite-dimensional $C^*$-algebras”, Math. Ann., 307:3 (1997), 343–380 | DOI | MR | Zbl

[6] N. P. Brown, “On quasidiagonal $C^*$-algebras”, Operator Algebras and Applications, Advanced Studies in Pure Math., 38, Math. Soc. Japan, Tokyo, 2004, 19–64 | DOI | MR | Zbl

[7] N. P. Brown, N. Ozawa, $C^*$-Algebras and Finite-Dimensional Approximations, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[8] K. Davidson, $C^*$-Algebras by Example, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[9] R. Exel, T. Loring, “Finite-dimensional representations of free product $C$-algebras”, Internat. J. Math., 3:4 (1992), 469–476 | DOI | MR | Zbl

[10] D. Hadwin, “Nonseparable approximate equivalence”, Trans. Amer. Math. Soc., 266:1 (1981), 203–231 | DOI | MR | Zbl

[11] D. Hadwin, “A lifting characterization of RFD $C^*$-algebras”, Math. Scand., 115:1 (2014), 85–95 | DOI | MR | Zbl

[12] D. Hadwin, Q. Li, J. Shen, “Topological free entropy dimensions in nuclear $C^*$-algebras and in full free products of unital $C^*$-algebras”, Canad. J. Math., 63 (2011), 511–590 | DOI | MR

[13] U. Haagerup, S. Thorbjørnsen, “A new application of random matrices: $\operatorname{Ext}(C_{\mathrm{red}}^{\ast}(F_{2}))$ is not a group”, Ann. of Math. (2), 162:2 (2005), 711–775 | DOI | MR | Zbl

[14] R. Kadison, J. Ringrose, Fundamentals of the Operator Algebras, v. 1, Academic Press, Orlando, FL, 1983 ; Fundamentals of the Operator Algebras, v. 2, Academic Press, Orlando, FL, 1986 | MR | Zbl | Zbl

[15] Q. Li, J. Shen, “A note on unital full amalgamated free products of RFD $C^*$-algebras”, Illinois J. Math, 56:2, 647–659 | MR | Zbl

[16] Q. Li, J. Shen, “Unital full amalgamated free products of MF $C^*$-algebras”, Oper. Matrices, 7:2 (2013), 333–356 | MR

[17] T. Loring, Lifting Solutions to Perturbing Problems in $C$-algebras, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[18] G. K. Pedersen, “Pullback and pushout constructions in $C^*$-algebra theory”, J. Funct. Anal., 167:2 (1999), 243–344 | DOI | MR | Zbl

[19] D. Voiculescu, “A note on quasi-diagonal $C^*$-algebras and homotopy”, Duke Math. J., 62:2 (1991), 267–271 | DOI | MR | Zbl

[20] D. Voiculescu, “Around quasidiagonal operators”, Integral Equations Operator Theory, 17:1 (1993), 137–149 | DOI | MR | Zbl