How to Approach Nonstandard Boundary Value Problems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 38-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to nonstandard boundary value problems is suggested. For such problems, we construct equivalent inclusions with surjective operators and study the solvability of these inclusions. The paper consists of two parts. The first part deals with problems in which the right-hand side of the equation is a Lipschitz mapping (Section 3); in the second part (Section 4), this mapping is completely continuous with respect to a surjective operator $A$. The paper also gives examples of how our theorems can be applied when studying nonstandard boundary value problems.
Keywords: closed surjective operator, set-valued contraction mapping, differential equation, topological dimension.
@article{FAA_2016_50_1_a2,
     author = {B. D. Gel'man},
     title = {How to {Approach} {Nonstandard} {Boundary} {Value} {Problems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - How to Approach Nonstandard Boundary Value Problems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 38
EP  - 46
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a2/
LA  - ru
ID  - FAA_2016_50_1_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T How to Approach Nonstandard Boundary Value Problems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 38-46
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a2/
%G ru
%F FAA_2016_50_1_a2
B. D. Gel'man. How to Approach Nonstandard Boundary Value Problems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 38-46. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a2/

[1] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[2] B. Ricceri, “On the topological dimension of the solution set of a class of nonlinear equations”, C. R. Acad. Sci. Paris, Sér. I Mat., 325:1 (1997), 65–70 | DOI | MR | Zbl

[3] B. D. Gelman, “Ob odnom klasse operatornykh uravnenii”, Matem. zametki, 70:4 (2001), 544–552 | DOI | MR | Zbl

[4] B. D. Gelman, “Mnogoznachnye szhimayuschie otobrazheniya i ikh prilozheniya”, Vestnik VGU, seriya fiz., mat., 2009, no. 1, 74–86 | Zbl

[5] B. D. Gelman, “Beskonechnomernaya versiya teoremy Borsuka–Ulama”, Funkts. analiz i ego pril., 38:4 (2004), 1–5 | DOI | MR | Zbl

[6] B. D. Gelman, “O zadache Koshi dlya odnogo klassa vyrozhdennykh differentsialnykh uravnenii s lipshitsevoi pravoi chastyu”, Funkts. analiz i ego pril., 42:3 (2008), 78–81 | DOI | MR | Zbl

[7] S. B. Nadler, “Multi-valued contraction mappings”, Pacific J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl

[8] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M, 1974 | MR

[9] B. D. Gelman, “Topologicheskie svoistva mnozhestva nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, Matem. sb., 188:12 (1997), 33–56 | DOI | MR | Zbl

[10] J. Saint Raymond, “Multivalued contractions”, Set-Valued Analysis, 2:4 (1994), 559–571 | DOI | MR | Zbl

[11] B. Ricceri, “Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes”, Atti Accad. Nas. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8), 81 (1987), 283–286 | MR | Zbl

[12] A. V. Arutyunov, B. D. Gelman, “Nekotorye svoistva mnozhestva tochek sovpadeniya”, Matem. sb., 206:3 (2015), 35–56 | DOI | MR | Zbl