Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of all linear transformations with a fixed Jordan structure $\mathcal J$ is a symplectic manifold isomorphic to the coadjoint orbit $\mathcal O (\mathcal J)$ of the general linear group $\operatorname{GL}(N,{\mathbb C})$. Any linear transformation can be projected along its eigenspace onto a coordinate subspace of complementary dimension. The Jordan structure $\tilde{\mathcal J}$ of the image under the projection is determined by the Jordan structure $\mathcal J$ of the preimage; consequently, the projection $\mathcal O (\mathcal J)\to \mathcal O (\tilde{\mathcal J})$ is a mapping of symplectic manifolds. It is proved that the fiber $\mathscr{E}$ of the projection is a linear symplectic space and the map $\mathcal O(\mathcal J) \stackrel{\sim}{\to} \mathscr{E} \times \mathcal O (\tilde{\mathcal J})$ is a birational symplectomorphism. Successively projecting the resulting transformations along eigensubspaces yields an isomorphism between $\mathcal O (\mathcal J)$ and the linear symplectic space being the direct product of all fibers of the projections. The Darboux coordinates on $\mathcal O(\mathcal J)$ are pullbacks of the canonical coordinates on this linear symplectic space. Canonical coordinates on orbits corresponding to various Jordan structures are constructed as examples.
Mots-clés : Jordan normal form, Lie–Poisson–Kirillov–Kostant form
Keywords: birational symplectic coordinates.
@article{FAA_2016_50_1_a1,
     author = {M. V. Babich},
     title = {Birational {Darboux} {Coordinates} on {(Co)Adjoint} {Orbits} of $\operatorname{GL}(N,\mathbb C)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {20--37},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 20
EP  - 37
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/
LA  - ru
ID  - FAA_2016_50_1_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%T Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 20-37
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/
%G ru
%F FAA_2016_50_1_a1
M. V. Babich. Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/

[1] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. nauchn. sem. POMI, 432 (2015), 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p036.pdf | MR | Zbl

[2] A. P. Veselov, S. P. Novikov, “Skobki Puassona i kompleksnye tory”, Algebraicheskaya geometriya i ee prilozheniya, Trudy MIAN, 165, 1984, 49–61 | MR | Zbl

[3] M. R. Adams, J. Harnad, J. Hurtubise, “Darboux coordinates on coadjoint orbits of Lie algebras”, Lett. Math. Phys., 40:1 (1997), 41–57 | DOI | MR | Zbl

[4] A. Gerasimov, S. Kharchev, D. Lebedev, “Representation theory and quantum inverse scattering method: the open Toda chain and hyperbolic Sutherland model”, Int. Math. Res. Not., 2004:1 (2004), 823–854 | DOI | MR | Zbl

[5] B. Dubrovin, M. Mazzocco, “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 | DOI | MR | Zbl

[6] I. M. Krichever, “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya Sine-Gordon”, Dokl. AN SSSR, ser. matem., 253:2 (1980), 288–292 | MR | Zbl

[7] A. Alekseev, L. Faddeev, S. Shatashvili, “Quantization of symplectic orbits of compact Lie groups by means of the functional integral”, J. Geom. Phys., 5:3 (1988), 391–406 | DOI | MR | Zbl

[8] S. E. Derkachov, A. N. Manashov, “R-matrix and Baxter Q-operators for the noncompact $\operatorname{SL}(N;\mathbb C)$ invariant spin chain”, SIGMA, 2 (2006), paper 084, arXiv: 0612003 | MR | Zbl

[9] M. V. Babich, S. E. Derkachev, “O ratsionalnoi simplekticheskoi parametrizatsii koprisoedinennoi orbity $\operatorname{GL}(N,\mathbb C)$, diagonalizuemyi sluchai”, Algebra i analiz, 22:3 (2010), 16–30 | MR

[10] M. V. Babich, “O koordinatakh na fazovykh prostranstvakh sistemy uravnenii Shlezingera i sistemy uravnenii Garne–Penleve 6”, Dokl. RAN, ser. matem., 412:4 (2007), 1–5 | MR

[11] N. Hitchin, “Geometrical aspects of Schlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl

[12] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003

[13] V. Guillemin, E. Lerman, S. Sternberg, Symplectic fibrations and multiplicity diagrams, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[14] D. MacDuff, D. Salmon, Introduction to symplectic topology, Oxford University Press, Oxford, 1998 | MR | Zbl

[15] J. Harris, Algebraic geometry. A first course, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1992 | DOI | MR | Zbl

[16] K. Okamoto, “Sur les feuilletages associés aux équations du second ordre à points criticues fixes de P. Painlevé, Espaces des conditions initiales”, Japan. J. Math., 5:1 (1979), 1–79 | DOI | MR | Zbl

[17] T. Shioda, K. Takano, “On some Hamiltonian structures of Painlevé systems I”, Funkcial. Ekvac., 40:2 (1997), 271–291 | MR | Zbl

[18] I. M. Gelfand, M. I. Naimark, “Unitarnye predstavleniya klassicheskikh grupp”, Trudy MIAN, 36, 1950 | MR | Zbl