Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_1_a1, author = {M. V. Babich}, title = {Birational {Darboux} {Coordinates} on {(Co)Adjoint} {Orbits} of $\operatorname{GL}(N,\mathbb C)$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {20--37}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/} }
TY - JOUR AU - M. V. Babich TI - Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2016 SP - 20 EP - 37 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/ LA - ru ID - FAA_2016_50_1_a1 ER -
M. V. Babich. Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/
[1] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. nauchn. sem. POMI, 432 (2015), 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p036.pdf | MR | Zbl
[2] A. P. Veselov, S. P. Novikov, “Skobki Puassona i kompleksnye tory”, Algebraicheskaya geometriya i ee prilozheniya, Trudy MIAN, 165, 1984, 49–61 | MR | Zbl
[3] M. R. Adams, J. Harnad, J. Hurtubise, “Darboux coordinates on coadjoint orbits of Lie algebras”, Lett. Math. Phys., 40:1 (1997), 41–57 | DOI | MR | Zbl
[4] A. Gerasimov, S. Kharchev, D. Lebedev, “Representation theory and quantum inverse scattering method: the open Toda chain and hyperbolic Sutherland model”, Int. Math. Res. Not., 2004:1 (2004), 823–854 | DOI | MR | Zbl
[5] B. Dubrovin, M. Mazzocco, “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 | DOI | MR | Zbl
[6] I. M. Krichever, “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya Sine-Gordon”, Dokl. AN SSSR, ser. matem., 253:2 (1980), 288–292 | MR | Zbl
[7] A. Alekseev, L. Faddeev, S. Shatashvili, “Quantization of symplectic orbits of compact Lie groups by means of the functional integral”, J. Geom. Phys., 5:3 (1988), 391–406 | DOI | MR | Zbl
[8] S. E. Derkachov, A. N. Manashov, “R-matrix and Baxter Q-operators for the noncompact $\operatorname{SL}(N;\mathbb C)$ invariant spin chain”, SIGMA, 2 (2006), paper 084, arXiv: 0612003 | MR | Zbl
[9] M. V. Babich, S. E. Derkachev, “O ratsionalnoi simplekticheskoi parametrizatsii koprisoedinennoi orbity $\operatorname{GL}(N,\mathbb C)$, diagonalizuemyi sluchai”, Algebra i analiz, 22:3 (2010), 16–30 | MR
[10] M. V. Babich, “O koordinatakh na fazovykh prostranstvakh sistemy uravnenii Shlezingera i sistemy uravnenii Garne–Penleve 6”, Dokl. RAN, ser. matem., 412:4 (2007), 1–5 | MR
[11] N. Hitchin, “Geometrical aspects of Schlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl
[12] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003
[13] V. Guillemin, E. Lerman, S. Sternberg, Symplectic fibrations and multiplicity diagrams, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[14] D. MacDuff, D. Salmon, Introduction to symplectic topology, Oxford University Press, Oxford, 1998 | MR | Zbl
[15] J. Harris, Algebraic geometry. A first course, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1992 | DOI | MR | Zbl
[16] K. Okamoto, “Sur les feuilletages associés aux équations du second ordre à points criticues fixes de P. Painlevé, Espaces des conditions initiales”, Japan. J. Math., 5:1 (1979), 1–79 | DOI | MR | Zbl
[17] T. Shioda, K. Takano, “On some Hamiltonian structures of Painlevé systems I”, Funkcial. Ekvac., 40:2 (1997), 271–291 | MR | Zbl
[18] I. M. Gelfand, M. I. Naimark, “Unitarnye predstavleniya klassicheskikh grupp”, Trudy MIAN, 36, 1950 | MR | Zbl