Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of all linear transformations with a fixed Jordan structure $\mathcal J$ is a symplectic manifold isomorphic to the coadjoint orbit $\mathcal O (\mathcal J)$ of the general linear group $\operatorname{GL}(N,{\mathbb C})$. Any linear transformation can be projected along its eigenspace onto a coordinate subspace of complementary dimension. The Jordan structure $\tilde{\mathcal J}$ of the image under the projection is determined by the Jordan structure $\mathcal J$ of the preimage; consequently, the projection $\mathcal O (\mathcal J)\to \mathcal O (\tilde{\mathcal J})$ is a mapping of symplectic manifolds. It is proved that the fiber $\mathscr{E}$ of the projection is a linear symplectic space and the map $\mathcal O(\mathcal J) \stackrel{\sim}{\to} \mathscr{E} \times \mathcal O (\tilde{\mathcal J})$ is a birational symplectomorphism. Successively projecting the resulting transformations along eigensubspaces yields an isomorphism between $\mathcal O (\mathcal J)$ and the linear symplectic space being the direct product of all fibers of the projections. The Darboux coordinates on $\mathcal O(\mathcal J)$ are pullbacks of the canonical coordinates on this linear symplectic space. Canonical coordinates on orbits corresponding to various Jordan structures are constructed as examples.
Mots-clés : Jordan normal form, Lie–Poisson–Kirillov–Kostant form
Keywords: birational symplectic coordinates.
@article{FAA_2016_50_1_a1,
     author = {M. V. Babich},
     title = {Birational {Darboux} {Coordinates} on {(Co)Adjoint} {Orbits} of $\operatorname{GL}(N,\mathbb C)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {20--37},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 20
EP  - 37
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/
LA  - ru
ID  - FAA_2016_50_1_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%T Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 20-37
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/
%G ru
%F FAA_2016_50_1_a1
M. V. Babich. Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/