Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37
Voir la notice de l'article provenant de la source Math-Net.Ru
The set of all linear transformations with a fixed Jordan structure $\mathcal J$ is a symplectic manifold isomorphic to the coadjoint orbit $\mathcal O (\mathcal J)$ of the general linear group $\operatorname{GL}(N,{\mathbb C})$. Any linear transformation can be projected along its eigenspace onto a coordinate subspace of complementary dimension. The Jordan structure $\tilde{\mathcal J}$ of the image under the projection is determined by the Jordan structure $\mathcal J$ of the preimage; consequently, the projection
$\mathcal O (\mathcal J)\to \mathcal O (\tilde{\mathcal J})$ is a mapping of symplectic manifolds.
It is proved that the fiber $\mathscr{E}$ of the projection is a linear symplectic space and the map $\mathcal O(\mathcal J) \stackrel{\sim}{\to} \mathscr{E} \times \mathcal O (\tilde{\mathcal J})$ is a birational symplectomorphism. Successively projecting the resulting transformations along eigensubspaces yields an isomorphism between $\mathcal O (\mathcal J)$ and the linear symplectic space being the direct product of all fibers of the projections. The Darboux coordinates on $\mathcal O(\mathcal J)$ are pullbacks of the canonical
coordinates on this linear symplectic space.
Canonical coordinates on orbits corresponding to various Jordan structures are constructed as examples.
Mots-clés :
Jordan normal form, Lie–Poisson–Kirillov–Kostant form
Keywords: birational symplectic coordinates.
Keywords: birational symplectic coordinates.
@article{FAA_2016_50_1_a1,
author = {M. V. Babich},
title = {Birational {Darboux} {Coordinates} on {(Co)Adjoint} {Orbits} of $\operatorname{GL}(N,\mathbb C)$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {20--37},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/}
}
TY - JOUR
AU - M. V. Babich
TI - Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2016
SP - 20
EP - 37
VL - 50
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/
LA - ru
ID - FAA_2016_50_1_a1
ER -
M. V. Babich. Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 20-37. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a1/