Module and Hochschild Cohomology of Certain Semigroup Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 90-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the relation between the module and Hochschild cohomology groups of Banach algebras. We show that, for every commutative Banach $\mathcal{A}$-$\mathfrak{A}$-bimodule $X$ and every
$k\in\mathbb{N}$, the seminormed spaces $\mathcal{H}^{k}_{\mathfrak{A}}(\mathcal{A},X^*)$ and
$\mathcal{H}^k(\mathcal{A}/J,X^*)$ are isomorphic, where $J$ is a specific closed ideal of $\mathcal{A}$. As an example, we show that, for an inverse semigroup $S$ with the set of idempotents $E$, where $\ell^1(E)$ acts on $\ell^1(S)$ by multiplication on the right and trivially on the left, the first module cohomology $\mathcal{H}^1_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is trivial for each $n\in\mathbb{N}$, where $G_S$ is the maximal group homomorphic image of $S$. Also, the second module cohomology $\mathcal{H}^2_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is a Banach space.
Keywords:
module cohomology group, Hochschild cohomology group, inverse semigroup, semigroup algebra.
@article{FAA_2015_49_4_a9,
author = {A. Shirinkalam and A. Purabbas and M. Amini},
title = {Module and {Hochschild} {Cohomology} of {Certain} {Semigroup} {Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {90--94},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/}
}
TY - JOUR AU - A. Shirinkalam AU - A. Purabbas AU - M. Amini TI - Module and Hochschild Cohomology of Certain Semigroup Algebras JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 90 EP - 94 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/ LA - ru ID - FAA_2015_49_4_a9 ER -
A. Shirinkalam; A. Purabbas; M. Amini. Module and Hochschild Cohomology of Certain Semigroup Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 90-94. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/