Module and Hochschild Cohomology of Certain Semigroup Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 90-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relation between the module and Hochschild cohomology groups of Banach algebras. We show that, for every commutative Banach $\mathcal{A}$-$\mathfrak{A}$-bimodule $X$ and every $k\in\mathbb{N}$, the seminormed spaces $\mathcal{H}^{k}_{\mathfrak{A}}(\mathcal{A},X^*)$ and $\mathcal{H}^k(\mathcal{A}/J,X^*)$ are isomorphic, where $J$ is a specific closed ideal of $\mathcal{A}$. As an example, we show that, for an inverse semigroup $S$ with the set of idempotents $E$, where $\ell^1(E)$ acts on $\ell^1(S)$ by multiplication on the right and trivially on the left, the first module cohomology $\mathcal{H}^1_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is trivial for each $n\in\mathbb{N}$, where $G_S$ is the maximal group homomorphic image of $S$. Also, the second module cohomology $\mathcal{H}^2_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is a Banach space.
Keywords: module cohomology group, Hochschild cohomology group, inverse semigroup, semigroup algebra.
@article{FAA_2015_49_4_a9,
     author = {A. Shirinkalam and A. Purabbas and M. Amini},
     title = {Module and {Hochschild} {Cohomology} of {Certain} {Semigroup} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--94},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/}
}
TY  - JOUR
AU  - A. Shirinkalam
AU  - A. Purabbas
AU  - M. Amini
TI  - Module and Hochschild Cohomology of Certain Semigroup Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 90
EP  - 94
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/
LA  - ru
ID  - FAA_2015_49_4_a9
ER  - 
%0 Journal Article
%A A. Shirinkalam
%A A. Purabbas
%A M. Amini
%T Module and Hochschild Cohomology of Certain Semigroup Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 90-94
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/
%G ru
%F FAA_2015_49_4_a9
A. Shirinkalam; A. Purabbas; M. Amini. Module and Hochschild Cohomology of Certain Semigroup Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 90-94. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a9/