Approximation of Markov Dynamics on the Dual Object of the Infinite-Dimensional Unitary Group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 61-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier, A. M. Borodin and the author constructed a $4$-parameter family of Markov processes on the dual object of the infinite-dimensional unitary group. The main new result is that these processes are limits of jump processes on dual objects of increasing compact unitary groups.
Keywords: Markov processes, intertwining kernels, infinite-dimensional unitary groups, Feller semigroups, Dyson's Brownian motion.
Mots-clés : Markov kernels
@article{FAA_2015_49_4_a4,
     author = {G. I. Olshanskii},
     title = {Approximation of {Markov} {Dynamics} on the {Dual} {Object} of the {Infinite-Dimensional} {Unitary} {Group}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--75},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a4/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Approximation of Markov Dynamics on the Dual Object of the Infinite-Dimensional Unitary Group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 61
EP  - 75
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a4/
LA  - ru
ID  - FAA_2015_49_4_a4
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Approximation of Markov Dynamics on the Dual Object of the Infinite-Dimensional Unitary Group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 61-75
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a4/
%G ru
%F FAA_2015_49_4_a4
G. I. Olshanskii. Approximation of Markov Dynamics on the Dual Object of the Infinite-Dimensional Unitary Group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 61-75. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a4/

[1] W. J. Anderson, Continuous-time Markov chains: An applications-oriented approach, Springer-Verlag, New York, 1991 | MR | Zbl

[2] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite–dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422, arXiv: 0109194 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields, 144:1–2 (2009), 281–318, arXiv: 0706.1034 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary”, J. Funct. Anal., 263:1 (2012), 248–303, arXiv: 1009.2029 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “The boundary of the Gelfand–Tsetlin graph: A new approach”, Adv. Math., 230:4–6 (2012), 1738–1779, arXiv: 1109.1412 | DOI | MR | Zbl

[6] A. Borodin, G. Olshanski, “Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles”, Electron. J. Probab., 18 (2013), paper 75, 1–43, arXiv: 1303.2794 | DOI | MR | Zbl

[7] F. J. Dyson, “A Brownian-motion model for the eigenvalues of a random matrix”, J. Math. Phys., 3 (1962), 1191–1198 | DOI | MR | Zbl

[8] S. N. Ethier, T. G. Kurtz, Markov processes. Characterization and convergence, Wiley, New York, 2005 | MR | Zbl

[9] M. Katori, H. Tanemura, “Markov property of determinantal processes with extended sine, Airy, and Bessel kernels”, Markov Process. Related. Fields, 17:4 (2011), 541–580, arXiv: 1106.4360 | MR | Zbl

[10] T. M. Liggett, Continuous time Markov processes, Graduate Texts in Math., 113, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[11] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: 0109193 | DOI | MR | Zbl

[12] G. Olshanski, Markov dynamics on the dual object to the infinite-dimensional group, zapiski minikursa v letnei shkole «Veroyatnost i statisticheskaya fizika» (Sankt-Peterburg, iyun 2012), Proc. Symposia in Pure Math. (to appear) , arXiv: 1310.6155 | Zbl

[13] G. Olshanski, “The Gelfand–Tsetlin graph and Markov processes (extended version of talk at ICM-2014, Seoul)”, Proc. Intern. Congress of Math., vol. IV, Kyung Moon Sa, Seoul, 2014, 431–454, arXiv: 1404.3646 | MR

[14] G. Olshanski, “The representation ring of the unitary groups and Markov processes of algebraic origin”, Adv. Math. (to appear) , arXiv: 1504.01646 | MR

[15] H. Osada, “Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials”, Ann. Probab., 41:1 (2013), 1–49, arXiv: 0902.3561 | DOI | MR | Zbl

[16] H. Osada, H. Tanemura, Strong Markov property of determinantal processes with extended kernels, arXiv: 1412.8678 | MR

[17] L. Petrov, “The Boundary of the Gelfand–Tsetlin graph: New proof of Borodin–Olshanski's formula, and its q-analogue”, Moscow Math. J., 14:1 (2014), 121–160, arXiv: 1208.3443 | DOI | MR | Zbl

[18] H. Spohn, “Interacting Brownian particles: a study of Dyson's model”, Hydrodynamic Behavior and Interacting Particle Systems, IMA Vol. Math. Appl., 9, Springer-Verlag, Berlin, 1987, 151–179 | DOI | MR

[19] Li-Cheng Tsai, Infinite dimensional stochastic differential equations for Dyson's model, arXiv: 1405.6692