Poisson and Fourier Transforms for Tensor Products
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 50-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the group $G=\operatorname{SL}(2,\mathbb{R})$, we write out explicitly differential operators intertwining irreducible finite-dimensional representations $T_k$ of $G$ with tensor products $T_{l}\otimes T_{m}$ (we call them Poisson and Fourier transforms); we also describe an analogue of harmonic analysis and write explicit expressions for compositions of these transforms with Lie operators of the overgroup $G\times G$. The constructions are based on a differential-difference relation for the Poisson kernel.
Keywords: Lie groups and Lie algebras, representations, tensor products
Mots-clés : Poisson and Fourier transforms.
@article{FAA_2015_49_4_a3,
     author = {V. F. Molchanov},
     title = {Poisson and {Fourier} {Transforms} for {Tensor} {Products}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a3/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Poisson and Fourier Transforms for Tensor Products
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 50
EP  - 60
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a3/
LA  - ru
ID  - FAA_2015_49_4_a3
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Poisson and Fourier Transforms for Tensor Products
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 50-60
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a3/
%G ru
%F FAA_2015_49_4_a3
V. F. Molchanov. Poisson and Fourier Transforms for Tensor Products. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 50-60. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a3/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1966 | MR

[2] V. F. Molchanov, “Kanonicheskie predstavleniya i nadgruppy dlya giperboloidov”, Funkts. analiz i ego pril., 39:4 (2005), 48–61 | DOI | MR | Zbl

[3] Yu. A. Neretin, “Deistvie nadalgebry v plansherelevskom razlozhenii i operatory sdviga v mnimom napravlenii”, Izv. RAN, ser. matem., 66:5 (2002), 171–182 | DOI | MR | Zbl

[4] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[5] H. Cohen, “Sums involving the values at negative integers of $L$-functions of quadratic characters”, Math. Ann., 217:3 (1975), 271–285 | DOI | MR | Zbl

[6] V. F. Molchanov, “Canonical representations and overgroups”, Lie Groups and Symmetric Spaces, Amer. Math. Soc. Transl., Ser. 2, 210, Amer. Math. Soc., Providence, RI, 2003, 213–224 | MR | Zbl

[7] V. F. Molchanov, “Canonical representations and overgroups for hyperboloids of one sheet and Lobachevsky spaces”, Acta Appl. Math., 86:1–2 (2005), 115–129 | DOI | MR | Zbl

[8] V. F. Molchanov, “Canonical representations on Lobachevsky spaces: an interaction with an overalgebra”, Acta Math. Appl., 99:3 (2007), 321–337 | DOI | MR | Zbl

[9] N. Mukunda, “Unitary representations of the homogeneous Lorentz group in an $O(2,1)$ basis”, J. Math Phys., 9:1 (1968), 50–61 | DOI | MR | Zbl

[10] R. A. Rankin, “The construction of automorphic forms from the derivatives of a given form”, J. Indian Math. Soc., 20 (1956), 103–116 | MR | Zbl