Unique Determination of a System by a Part of the Monodromy Matrix
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 33-49

Voir la notice de l'article provenant de la source Math-Net.Ru

First-order ODE systems on a finite interval with nonsingular diagonal matrix $B$ multiplying the derivative and integrable off-diagonal potential matrix $Q$ are considered. It is proved that the matrix $Q$ is uniquely determined by the monodromy matrix $W(\lambda)$. In the case $B = B^*$, the minimum number of matrix entries of $W(\lambda)$ sufficient to uniquely determine $Q$ is found.
Keywords: ODE systems, canonical systems, inverse problems for ODE systems.
Mots-clés : monodromy matrix
@article{FAA_2015_49_4_a2,
     author = {M. M. Malamud},
     title = {Unique {Determination} of a {System} by a {Part} of the {Monodromy} {Matrix}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/}
}
TY  - JOUR
AU  - M. M. Malamud
TI  - Unique Determination of a System by a Part of the Monodromy Matrix
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 33
EP  - 49
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/
LA  - ru
ID  - FAA_2015_49_4_a2
ER  - 
%0 Journal Article
%A M. M. Malamud
%T Unique Determination of a System by a Part of the Monodromy Matrix
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 33-49
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/
%G ru
%F FAA_2015_49_4_a2
M. M. Malamud. Unique Determination of a System by a Part of the Monodromy Matrix. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 33-49. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/