Unique Determination of a System by a Part of the Monodromy Matrix
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 33-49
Voir la notice de l'article provenant de la source Math-Net.Ru
First-order ODE systems on a finite interval with nonsingular diagonal matrix $B$ multiplying the derivative
and integrable off-diagonal potential matrix $Q$ are considered. It is proved that the matrix $Q$ is uniquely determined by the monodromy matrix $W(\lambda)$. In the case $B = B^*$, the minimum number of matrix
entries of $W(\lambda)$ sufficient to uniquely determine $Q$ is found.
Keywords:
ODE systems, canonical systems, inverse problems for ODE systems.
Mots-clés : monodromy matrix
Mots-clés : monodromy matrix
@article{FAA_2015_49_4_a2,
author = {M. M. Malamud},
title = {Unique {Determination} of a {System} by a {Part} of the {Monodromy} {Matrix}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {33--49},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/}
}
M. M. Malamud. Unique Determination of a System by a Part of the Monodromy Matrix. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 33-49. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/