Unique Determination of a System by a Part of the Monodromy Matrix
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 33-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

First-order ODE systems on a finite interval with nonsingular diagonal matrix $B$ multiplying the derivative and integrable off-diagonal potential matrix $Q$ are considered. It is proved that the matrix $Q$ is uniquely determined by the monodromy matrix $W(\lambda)$. In the case $B = B^*$, the minimum number of matrix entries of $W(\lambda)$ sufficient to uniquely determine $Q$ is found.
Keywords: ODE systems, canonical systems, inverse problems for ODE systems.
Mots-clés : monodromy matrix
@article{FAA_2015_49_4_a2,
     author = {M. M. Malamud},
     title = {Unique {Determination} of a {System} by a {Part} of the {Monodromy} {Matrix}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/}
}
TY  - JOUR
AU  - M. M. Malamud
TI  - Unique Determination of a System by a Part of the Monodromy Matrix
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 33
EP  - 49
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/
LA  - ru
ID  - FAA_2015_49_4_a2
ER  - 
%0 Journal Article
%A M. M. Malamud
%T Unique Determination of a System by a Part of the Monodromy Matrix
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 33-49
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/
%G ru
%F FAA_2015_49_4_a2
M. M. Malamud. Unique Determination of a System by a Part of the Monodromy Matrix. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 33-49. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a2/

[1] S. Albeverio, R. Hryniv, Ya. Mykytyuk, “Inverse spectral problems for Dirac operators with summable potentials”, Russ. J. Math. Physics, 12:4 (2005), 406–423 | MR | Zbl

[2] D. Z. Arov, H. Dym, Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations, Encyclopedia of Mathematics and its Applications, 145, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[3] D. Chelkak, E. Korotyaev, “Weyl–Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval”, J. Funct. Anal., 257:3 (2009), 1546–1588 | DOI | MR | Zbl

[4] De Branges, “Some Hilbert spaces of entire functions. IV”, Trans. Amer. Math. Soc., 105 (1962), 43–83 | DOI | MR | Zbl

[5] M. S. Brodskii, “Obratnaya zadacha dlya sistem lineinykh differentsialnykh uravnenii, soderzhaschikh parametr”, Dokl. AN SSSR, 112:5 (1957), 800–803 | MR | Zbl

[6] M. S. Brodskii, M. S. Livshits, “Spektralnyi analiz nesamosopryazhennykh operatorov i promezhutochnye sistemy”, UMN, 13:1(79) (1958), 3–85 | MR | Zbl

[7] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[8] F. Gesztesy, A. Kiselev, K. A. Makarov, “Uniqueness results for matrix-valued Schrodinger, Jacobi, and Dirac-type operators”, Math. Nachr., 239/240 (2002), 103–145 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] F. Gesztesy, “Inverse spectral theory as influenced by Barry Simon Spectral Theory and Mathematical Physics”, A Festschrift in Honor of Barry Simon's 60th Birthday, Part 2, Proc. Sympos. Pure Math., 76, Amer. Math. Soc., Providence, RI, 2007, 741–820 | DOI | MR | Zbl

[10] A. A. Golubkov, V. A. Makarov, “Opredelenie koordinatnoi zavisimosti nekotorykh komponent tenzora kubicheskoi vospriimchivosti $\widehat\chi^{(3)}(z, \omega, -\omega, \omega,\omega)$ odnomerno neodnorodnoi pogloschayuschei plastinki pri proizvolnoi chastotnoi dispersii”, Kvant. elektron., 40:11 (2010), 1045–1050

[11] A. A. Golubkov, V. A. Makarov, “Vosstanovlenie prostansvennykh profilei otdelnykh komponent tenzorov nelineinoi vospriimchivosti $\widehat\chi^{(3)}(z,\omega',\omega',-\omega,\omega)$ i $\widehat\chi^{(3)}(z,2\omega\pm\omega', \pm\omega', \omega,\omega)$ odnomerno neodnorodnoi sredy”, Kvant. elektron., 41:6 (2011), 534–540

[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov, Nauka, M., 1980 | MR

[13] E. Korotyaev, “Conformal spectral theory for the monodromy matrix”, Trans. Amer. Math. Soc., 362:7 (2010), 3435–3462 | DOI | MR | Zbl

[14] E. Korotyaev, “Spectral estimates for matrix-valued periodic Dirac operators”, Asymptot. Anal., 59:3-4 (2008), 195–225 | DOI | MR | Zbl

[15] G. E. Kisilevskii, “Invariantnye podprostranstva volterrovykh dissipativnykh operatorov s yadernymi mnimymi komponentami”, Izv. AN SSSR, 32:1 (1968), 3–23 | MR | Zbl

[16] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[17] Z. L. Leibenzon, “Svyaz mezhdu obratnoi zadachei i polnotoi sobstvennykh funktsii”, Dokl. AN SSSR, 145:3 (1962), 519–522 | MR | Zbl

[18] M. M. Malamud, “O teoremakh tipa Borga dlya sistem pervogo poryadka na konechnom intervale”, Funkts. analiz i ego pril., 33:1 (1999), 75–80 | DOI | MR | Zbl

[19] M. M. Malamud, “Voprosy edinstvennosti v obratnykh zadachakh dlya sistem differentsialnykh uravnenii na konechnom intervale”, Trudy MMO, 60 (1999), 199–258 | MR | Zbl

[20] M. M. Malamud, “Uniqueness of the matrix Sturm–Liouville equation given a part of the monodromy matrix, and Borg type results”, Sturm–Liouville Theory: Past and Present, Birkhauser, Basel, 2005, 237–270 | DOI | MR | Zbl

[21] M. M. Malamud, “Teoremy tipa Borga dlya uravnenii vysokikh poryadkov s matrichnymi koeffitsientami”, Dokl. RAN, 409:3 (2006), 312–316 | MR | Zbl

[22] M. M. Malamud, Voprosy edinstvennosti, polnoty i samosopryazhennosti granichnykh zadach dlya sistem ODU, Dokt. diss., 2010

[23] M. Malamud, L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263:7 (2012), 1939–1980 | DOI | MR | Zbl

[24] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[25] Ya. V. Mykytyuk, N. S. Trush, “Inverse spectral problems for Sturm–Liouville operators with matrix-valued potentials”, Inverse Problems, 26:1 (2010), 1–36 | DOI | MR | Zbl

[26] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[27] L. A. Sakhnovich, “O privedenii volterrovykh operatorov k prosteishemu vidu i obratnykh zadachakh”, Izv. AN SSSR, 21:2 (1957), 235–262 | MR | Zbl

[28] L. A. Sakhnovich, “O dissipativnykh volterrovykh operatorakh”, Matem. sb., 576:3 (1968), 323–343

[29] V. Yurko, “Inverse problems for matrix Sturm–Liouville operators”, Russ. J. Math. Phys., 13:1 (2006), 111–118 | DOI | MR | Zbl

[30] H. Winkler, Two-dimensional Hamiltonian systems, Preprint No. M13/15, Technische Universität Ilmenau, Institut für Mathematik, 2013