Hirzebruch Functional Equation and Elliptic Functions of Level $d$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 1-17
Voir la notice de l'article provenant de la source Math-Net.Ru
A function $f(x)$ of a complex variable $x$ regular in a neighborhood of $x=0$ and such that $f(0)=0$ and $f'(0)=1$ is said to be $n$-rigid if the sum of residues of the function $\prod_{i=0}^n1/f(x-x_i)$ does not depend on the choice of different points $x_0,\dots,x_n$ in a small neighborhood of $x=0$. The power series expansion of an $n$-rigid function is determined by a functional equation. We refer to this equation as the Hirzebruch $n$-equation. If $d$ is a divisor of $n+1$, then any elliptic function of level $d$ is $n$-rigid. A description of the manifold of all $2$-rigid functions has been obtained very recently. The main result of this work is a description of the manifold of all $3$-rigid functions.
Keywords:
functional equation, elliptic function.
Mots-clés : Hirzebruch genus
Mots-clés : Hirzebruch genus
@article{FAA_2015_49_4_a0,
author = {V. M. Buchstaber and I. V. Netay},
title = {Hirzebruch {Functional} {Equation} and {Elliptic} {Functions} of {Level} $d$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--17},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/}
}
TY - JOUR AU - V. M. Buchstaber AU - I. V. Netay TI - Hirzebruch Functional Equation and Elliptic Functions of Level $d$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 1 EP - 17 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/ LA - ru ID - FAA_2015_49_4_a0 ER -
V. M. Buchstaber; I. V. Netay. Hirzebruch Functional Equation and Elliptic Functions of Level $d$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/