Hirzebruch Functional Equation and Elliptic Functions of Level $d$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f(x)$ of a complex variable $x$ regular in a neighborhood of $x=0$ and such that $f(0)=0$ and $f'(0)=1$ is said to be $n$-rigid if the sum of residues of the function $\prod_{i=0}^n1/f(x-x_i)$ does not depend on the choice of different points $x_0,\dots,x_n$ in a small neighborhood of $x=0$. The power series expansion of an $n$-rigid function is determined by a functional equation. We refer to this equation as the Hirzebruch $n$-equation. If $d$ is a divisor of $n+1$, then any elliptic function of level $d$ is $n$-rigid. A description of the manifold of all $2$-rigid functions has been obtained very recently. The main result of this work is a description of the manifold of all $3$-rigid functions.
Keywords: functional equation, elliptic function.
Mots-clés : Hirzebruch genus
@article{FAA_2015_49_4_a0,
     author = {V. M. Buchstaber and I. V. Netay},
     title = {Hirzebruch {Functional} {Equation} and {Elliptic} {Functions} of {Level} $d$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - I. V. Netay
TI  - Hirzebruch Functional Equation and Elliptic Functions of Level $d$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 1
EP  - 17
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/
LA  - ru
ID  - FAA_2015_49_4_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A I. V. Netay
%T Hirzebruch Functional Equation and Elliptic Functions of Level $d$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 1-17
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/
%G ru
%F FAA_2015_49_4_a0
V. M. Buchstaber; I. V. Netay. Hirzebruch Functional Equation and Elliptic Functions of Level $d$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/

[1] V. M. Buchstaber, A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math. Z., 223:4 (1996), 595–607 | DOI | MR | Zbl

[2] V. M. Buchstaber, G. Felder, A. P. Veselov, “Elliptic Dunkl operators, root systems, and functional equations”, Duke Math. J., 76:3 (1994), 885–911 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, A. P. Veselov, “Operatory Dankla, funktsionalnye uravneniya i preobrazovaniya ellipticheskikh rodov”, UMN, 49:2(296) (1994), 147–148 | DOI | MR | Zbl

[4] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[5] O. R. Musin, “On rigid Hirzebruch genera”, Mosc. Math. J., 11:1 (2011), 139–147 | DOI | MR | Zbl

[6] W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[7] I. M. Krichever, “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Matem. zametki, 47:2 (1990), 34–45 | MR

[8] F. Hirzebruch, Th. Berger, R. Jung, Manifolds and Modular Forms, Fiedr. Vieweg Sons, Braunschweig, 1992 | MR

[9] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, ch. 2. Transtsendentnye funktsii, Fizmatlit, M., 1963

[10] V. M. Bukhshtaber, E. Yu. Bunkova, “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR | Zbl

[11] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR

[12] V. M. Bukhshtaber, E. Yu. Bunkova, “Universalnaya formalnaya gruppa, opredelyayuschaya ellipticheskuyu funktsiyu urovnya 3”, Chebyshevskii sb., 16:2 (2015), 66–78 | MR | Zbl

[13] V. M. Bukhshtaber, E. Yu. Bunkova, “Mnogoobraziya reshenii funktsionalnykh uravnenii Khirtsebrukha”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sb. statei, Tr. MIAN, 290, MAIK, M., 2015, 136–148 | DOI

[14] V. M. Buchstaber, T. E. Panov, Toric Topology, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[15] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, 2004 | MR

[16] S. P. Novikov, “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR, ser. matem., 32:6 (1968), 1245–1263 | MR | Zbl