Hirzebruch Functional Equation and Elliptic Functions of Level $d$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f(x)$ of a complex variable $x$ regular in a neighborhood of $x=0$ and such that $f(0)=0$ and $f'(0)=1$ is said to be $n$-rigid if the sum of residues of the function $\prod_{i=0}^n1/f(x-x_i)$ does not depend on the choice of different points $x_0,\dots,x_n$ in a small neighborhood of $x=0$. The power series expansion of an $n$-rigid function is determined by a functional equation. We refer to this equation as the Hirzebruch $n$-equation. If $d$ is a divisor of $n+1$, then any elliptic function of level $d$ is $n$-rigid. A description of the manifold of all $2$-rigid functions has been obtained very recently. The main result of this work is a description of the manifold of all $3$-rigid functions.
Keywords: functional equation, elliptic function.
Mots-clés : Hirzebruch genus
@article{FAA_2015_49_4_a0,
     author = {V. M. Buchstaber and I. V. Netay},
     title = {Hirzebruch {Functional} {Equation} and {Elliptic} {Functions} of {Level} $d$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - I. V. Netay
TI  - Hirzebruch Functional Equation and Elliptic Functions of Level $d$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 1
EP  - 17
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/
LA  - ru
ID  - FAA_2015_49_4_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A I. V. Netay
%T Hirzebruch Functional Equation and Elliptic Functions of Level $d$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 1-17
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/
%G ru
%F FAA_2015_49_4_a0
V. M. Buchstaber; I. V. Netay. Hirzebruch Functional Equation and Elliptic Functions of Level $d$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a0/