Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers estimates for the Fourier transforms of signed measures concentrated on families of hypersurfaces. A theorem about the integrability of Randol-type maximal functions related to a certain class of nonconvex hypersurfaces is presented. The results are applied to study the integrability of the Fourier transforms of signed measures concentrated on certain hypersurfaces. In a special case, the exact integrability exponent of the Fourier transforms of measures is specified. The results improve a recent theorem of L. Erdős and M. Salmhofer.
Keywords: asymptotics, Fourier transforms, integrability, curvature.
@article{FAA_2015_49_3_a7,
     author = {I. A. Ikromov},
     title = {Integrability of the {Fourier} {Transforms} of {Measures} {Concentrated} on {Hypersurfaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {74--79},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/}
}
TY  - JOUR
AU  - I. A. Ikromov
TI  - Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 74
EP  - 79
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/
LA  - ru
ID  - FAA_2015_49_3_a7
ER  - 
%0 Journal Article
%A I. A. Ikromov
%T Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 74-79
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/
%G ru
%F FAA_2015_49_3_a7
I. A. Ikromov. Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 74-79. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/

[1] V. P. Palamodov, Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, 72, VINITI, M., 1991, 5–134 | MR

[2] V. V. Lebedev, Funkts. analiz i ego pril., 47:1 (2013), 33–46 | DOI | MR | Zbl

[3] E. M. Stein, Harmonic Analysis: Real-Valued Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | MR

[4] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR

[5] Hua Loo-keng, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR

[6] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Izv. AN SSSR, ser. matem., 43:5 (1979), 971–1003 | MR

[7] I. A. Ikromov, Matem. zametki, 87:5 (2010), 734–755 | DOI | MR | Zbl

[8] L. Erdös, M. Salmhofer, Math. Z., 257:2 (2007), 261–294 | DOI | MR | Zbl

[9] V. I. Arnold, A. N. Varchenko, S. M. Gusein-zade, Osobennosti differntsiruemykh otobrazhenii, ch. 1. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[10] B. Randol, Trans. Amer. Math. Soc., 139 (1969), 279–285 | DOI | MR | Zbl

[11] I. Svensson, Ark. Mat., 9:1 (1970), 11–22 | MR

[12] I. A. Ikromov, Funkts. analiz i ego pril., 29:3 (1995), 16–24 | MR | Zbl