Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 74-79
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers estimates for the Fourier transforms of signed measures concentrated on families of hypersurfaces. A theorem about the integrability of Randol-type maximal functions related to a certain class of nonconvex hypersurfaces is presented. The results are applied to study the integrability of the Fourier transforms of signed measures concentrated on certain hypersurfaces. In a special case, the exact integrability exponent of the Fourier transforms of measures is specified. The results improve a recent theorem of L. Erdős and M. Salmhofer.
Keywords:
asymptotics, Fourier transforms, integrability, curvature.
@article{FAA_2015_49_3_a7,
author = {I. A. Ikromov},
title = {Integrability of the {Fourier} {Transforms} of {Measures} {Concentrated} on {Hypersurfaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {74--79},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/}
}
TY - JOUR AU - I. A. Ikromov TI - Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 74 EP - 79 VL - 49 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/ LA - ru ID - FAA_2015_49_3_a7 ER -
I. A. Ikromov. Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 74-79. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a7/