Determinantal Measures Related to Big $q$-Jacobi Polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a novel combinatorial object—the extended Gelfand–Tsetlin graph with cotransition probabilities depending on a parameter $q$. The boundary of this graph admits an explicit description. We introduce a family of probability measures on the boundary and describe their correlation functions. These measures are a $q$-analogue of the spectral measures studied earlier in the context of the problem of harmonic analysis on the infinite-dimensional unitary group.
Keywords: Gelfand–Tsetlin graph, determinantal measures, big $q$-Jacobi polynomials, basic hypergeometric series.
@article{FAA_2015_49_3_a6,
     author = {V. Gorin and G. I. Olshanskii},
     title = {Determinantal {Measures} {Related} to {Big} $q${-Jacobi} {Polynomials}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {70--74},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a6/}
}
TY  - JOUR
AU  - V. Gorin
AU  - G. I. Olshanskii
TI  - Determinantal Measures Related to Big $q$-Jacobi Polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 70
EP  - 74
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a6/
LA  - ru
ID  - FAA_2015_49_3_a6
ER  - 
%0 Journal Article
%A V. Gorin
%A G. I. Olshanskii
%T Determinantal Measures Related to Big $q$-Jacobi Polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 70-74
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a6/
%G ru
%F FAA_2015_49_3_a6
V. Gorin; G. I. Olshanskii. Determinantal Measures Related to Big $q$-Jacobi Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 70-74. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a6/

[1] A. Borodin, The Oxford Handbook on Random Matrix Theory, Chap. 11, Oxford University Press, Oxford, 2011, 231–249, arXiv: 0911.1153 | MR | Zbl

[2] A. Borodin, G. Olshanski, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, Adv. Math., 230:4–6 (2012), 1738–1779 | DOI | MR | Zbl

[4] V. Gorin, Adv. Math., 229:1 (2012), 201–266, arXiv: 1011.1769 | DOI | MR | Zbl

[5] W. Groenevelt, Constr. Approx., 29:1 (2009), 85–127, arXiv: math/0612643 | DOI | MR | Zbl

[6] W. Groenevelt, SIGMA, 7 (2011), 077, arXiv: 1104.5101 | MR | Zbl

[7] W. Groenevelt, E. Koelink, J. Approx. Theory, 163:7 (2011), 836–863, arXiv: 0911.0205 | DOI | MR

[8] W. König, Probab. Surv., 2 (2005), 385–447 | DOI | MR | Zbl

[9] R. Koekoek, R. F. Swarttouw, Report 98-17, Faculty of Technical Math. Inform., Delft Univ. of Technology, 1998 http://aw.twi.tudelft.nl/~koekoek/askey/

[10] T. H. Koornwinder,, arXiv: 1401.0815

[11] A. Okounkov, G. Olshanski, Internat. Math. Res. Notices, 1998:13 (1998), 641–682 | DOI | MR | Zbl

[12] G. Olshanski, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: math/0109193 | DOI | MR | Zbl

[13] G. I. Olshanskii, Funkts. analiz i ego pril., 37:4 (2003), 49–73 | DOI | MR | Zbl

[14] G. I. Olshanskii, A. A. Osinenko, Funkts. analiz i ego pril., 46:4 (2012), 31–50 | DOI | MR | Zbl