Henson Graphs and Urysohn--Henson Graphs as Cayley Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 41-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss groups acting regularly on the Henson graphs $\Gamma_n$, answering a question posed by Peter Cameron, and we explore a number of related questions.
Keywords: Cayley graph, Henson graph, homogeneity, random graph, regular action, Urysohn space.
@article{FAA_2015_49_3_a2,
     author = {G. Cherlin},
     title = {Henson {Graphs} and {Urysohn--Henson} {Graphs} as {Cayley} {Graphs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {41--56},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a2/}
}
TY  - JOUR
AU  - G. Cherlin
TI  - Henson Graphs and Urysohn--Henson Graphs as Cayley Graphs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 41
EP  - 56
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a2/
LA  - ru
ID  - FAA_2015_49_3_a2
ER  - 
%0 Journal Article
%A G. Cherlin
%T Henson Graphs and Urysohn--Henson Graphs as Cayley Graphs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 41-56
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a2/
%G ru
%F FAA_2015_49_3_a2
G. Cherlin. Henson Graphs and Urysohn--Henson Graphs as Cayley Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 41-56. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a2/

[1] P. Cameron, “Homogeneous Cayley objects”, European J. Combin., 21:6 (2000), 745–760 | DOI | MR | Zbl

[2] P. Cameron, K. Johnson, “An investigation on countable $B$-groups”, Math. Proc. Cambridge Philos. Soc., 102:2 (1987), 223–232 | DOI | MR

[3] P. Cameron, A. Vershik, “Some isometry groups of the Urysohn space”, Ann. Pure Appl. Logic, 143:1–3 (2006), 70–78 | DOI | MR | Zbl

[4] G. L. Cherlin, “The classification of countable homogeneous directed graphs and countable homogeneous $n$-tournaments”, Mem. Amer. Math. Soc., 131, no. 621, 1998 | MR

[5] G. Cherlin, “Two problems on homogeneous structures, revisited”, Model Theoretic Methods in Finite Combinatorics, Contemporary Math., 558, Amer. Math. Soc., Providence, RI, 2011, 319–415 | DOI | MR | Zbl

[6] M. El-Zahar, N. Sauer, “The indivisibility of the homogeneous $K_n$-free graphs”, J. Combin. Theory Ser. B, 47:2 (1989), 162–170 | DOI | MR | Zbl

[7] C. Even-Zahar, N. Linial, “Triply existentially complete triangle-free graphs”, J. Graph Theory, 78:4 (2015), 305–317 | DOI | MR

[8] R. Fra\"{i}ssé, “Sur certains relations qui généralisent l'ordre des nombres rationnels”, C. R. Acad. Sci. Paris, 237 (1953), 540–542 | MR | Zbl

[9] C. W. Henson, “A family of countable homogeneous graphs”, Pacific J. Math., 38 (1971), 69–83 | DOI | MR

[10] P. S. Urysohn, “Sur un espace métrique universel”, C. R. Acad. Sci. Paris, 180 (1925), 803–806 | Zbl