On the Centralizer of an Infinite Mixing Rank-One Transformation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A property of minimal self-joinings for mixing rank-one transformations preserving the measure of an infinite Lebesgue space is established. Its main consequence is the triviality of the centralizer of such transformations.
Keywords: mixing, rank-one transformation, sigma-finite measure, minimal self-joinings.
@article{FAA_2015_49_3_a10,
     author = {V. V. Ryzhikov and J.-P. Thouvenot},
     title = {On the {Centralizer} of an {Infinite} {Mixing} {Rank-One} {Transformation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a10/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
AU  - J.-P. Thouvenot
TI  - On the Centralizer of an Infinite Mixing Rank-One Transformation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 88
EP  - 91
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a10/
LA  - ru
ID  - FAA_2015_49_3_a10
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%A J.-P. Thouvenot
%T On the Centralizer of an Infinite Mixing Rank-One Transformation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 88-91
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a10/
%G ru
%F FAA_2015_49_3_a10
V. V. Ryzhikov; J.-P. Thouvenot. On the Centralizer of an Infinite Mixing Rank-One Transformation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a10/

[1] A. M. Vershik, I. M. Gelfand, M. I. Graev, UMN, 30:6 (186) (1975), 3–50 | MR | Zbl

[2] A. I. Danilenko, V. V. Ryzhikov, Ergodic Theory Dynam. Systems, 31:3 (2011), 853–873 | DOI | MR | Zbl

[3] R. S. Ismagilov, Funkts. analiz i ego pril., 9:2 (1975), 71–72 | MR | Zbl

[4] J. L. King, Ergodic Theory Dynam. Systems, 6 (1986), 363–384 | DOI | MR | Zbl

[5] M. Lemanczyk, F. Parreau, J.-P. Thouvenot, Fund. Math., 164:3 (2000), 253–293 | DOI | MR | Zbl

[6] Yu. A. Neretin, Matem. sb., 188:11 (1997), 19–50 | DOI | MR | Zbl

[7] D. Ornstein, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, University of California Press, Berkley, 1972, 347–356 | MR | Zbl

[8] E. Roy, Ergodic Theory Dynam. Systems, 29:2 (2009), 667–683 | DOI | MR | Zbl

[9] D. J. Rudolph, J. Anal. Math., 35 (1979), 97–122 | DOI | MR | Zbl

[10] V. V. Ryzhikov, Matem. sb., 183:3 (1992), 133–160 | MR

[11] V. V. Ryzhikov, Trudy MMO, 75:1 (2014), 93–103 | MR | Zbl

[12] A. M. Vershik, Discrete Contin. Dynam. Sys., 13 (2005), 1305–1324 | DOI | MR | Zbl