Commuting Difference Operators and the Combinatorial Gale Transform
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 22-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop the spectral theory of $n$-periodic strictly triangular difference operators $L=T^{-k-1}+\sum_{j=1}^k a_i^j T^{-j}$ and the spectral theory of the “superperiodic” operators for which all solutions of the equation $(L+1)\psi=0$ are (anti)periodic. We show that, for a superperiodic operator $L$ of order $k+1$, there exists a unique superperiodic operator $\mathcal{L}$ of order $n-k-1$ which commutes with $L$ and show that the duality $L\leftrightarrow \mathcal{L}$ coincides, up to a certain involution, with the combinatorial Gale transform recently introduced in [S. Morier-Genoud, V. Ovsienko, R. E. Schwartz, S. Tabachnikov, Linear difference equations, frieze patterns and combinatorial Gale transform, Forum Math. Sigma, 2 (2014), e22].
Keywords:
spectral theory of linear difference operators, commuting difference operators, frieze patterns
Mots-clés : moduli spaces of $n$-gons, Gale transform.
Mots-clés : moduli spaces of $n$-gons, Gale transform.
@article{FAA_2015_49_3_a1,
author = {I. M. Krichever},
title = {Commuting {Difference} {Operators} and the {Combinatorial} {Gale} {Transform}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {22--40},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a1/}
}
I. M. Krichever. Commuting Difference Operators and the Combinatorial Gale Transform. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 22-40. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a1/