Commuting Difference Operators and the Combinatorial Gale Transform
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 22-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the spectral theory of $n$-periodic strictly triangular difference operators $L=T^{-k-1}+\sum_{j=1}^k a_i^j T^{-j}$ and the spectral theory of the “superperiodic” operators for which all solutions of the equation $(L+1)\psi=0$ are (anti)periodic. We show that, for a superperiodic operator $L$ of order $k+1$, there exists a unique superperiodic operator $\mathcal{L}$ of order $n-k-1$ which commutes with $L$ and show that the duality $L\leftrightarrow \mathcal{L}$ coincides, up to a certain involution, with the combinatorial Gale transform recently introduced in [S. Morier-Genoud, V. Ovsienko, R. E. Schwartz, S. Tabachnikov, Linear difference equations, frieze patterns and combinatorial Gale transform, Forum Math. Sigma, 2 (2014), e22].
Keywords: spectral theory of linear difference operators, commuting difference operators, frieze patterns
Mots-clés : moduli spaces of $n$-gons, Gale transform.
@article{FAA_2015_49_3_a1,
     author = {I. M. Krichever},
     title = {Commuting {Difference} {Operators} and the {Combinatorial} {Gale} {Transform}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--40},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a1/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - Commuting Difference Operators and the Combinatorial Gale Transform
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 22
EP  - 40
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a1/
LA  - ru
ID  - FAA_2015_49_3_a1
ER  - 
%0 Journal Article
%A I. M. Krichever
%T Commuting Difference Operators and the Combinatorial Gale Transform
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 22-40
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a1/
%G ru
%F FAA_2015_49_3_a1
I. M. Krichever. Commuting Difference Operators and the Combinatorial Gale Transform. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 22-40. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a1/

[1] I. Assem, C. Reutenauer, D. Smith, “Friezes”, Adv. Math., 225:6 (2010), 3134–3165 | DOI | MR | Zbl

[2] F. Bergeron, C. Reutenauer, “$SL_k$-tilings of the plane”, Illinois J. Math., 54:1 (2010), 263–300 | DOI | MR | Zbl

[3] J. H. Conway, H. S. M. Coxeter, “Triangulated polygons and frieze patterns”, Math. Gaz., 57:400 (1973), 87–94 | DOI | MR | Zbl

[4] H. S. M. Coxeter, “Frieze patterns”, Acta Arith., 18 (1971), 297–310 | DOI | MR | Zbl

[5] D. Eisenbud, S. Popescu, “The projective geometry of Gale transform”, J. Algebra, 230:1 (2000), 127–173 | DOI | MR | Zbl

[6] V. Fock, A. Marshakov, Loop groups, clusters, dimers and integrable systems, arXiv: 1401.1606 | MR

[7] D. Gale, “Neighboring vertices on a convex polyhedron”, Linear Inequalities and Related Systems, Annals of Math. Studies, 38, Princeton University Press, Princeton, NJ, 1956, 255–263 | MR

[8] C. F. Gauss, “Pentagramma Mirificum”, Werke, Bd. III, 481–490

[9] I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmanianns and generalization of the dilogarithm”, Adv. in Math., 44:3 (1982), 279–312 | DOI | MR | Zbl

[10] M. Gekhtman, M. Shapiro, S. Tabachnikov, A. Vainshtein, “Higher pentagram maps, weighted directed networks, and cluster dynamics”, Electron. Res. Announc. Math. Sci., 19 (2012), 1–17 | MR | Zbl

[11] M. Kapranov, “Chow quotients of Grassmanianns, I”, I. M. Gelfand Seminar, Advances in Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110 | MR | Zbl

[12] B. Khesin, F. Soloviev, “Integrability of higher pentargam maps”, Math. Ann., 357:3 (2013), 1005–1047 | DOI | MR | Zbl

[13] B. Khesin, F. Soloviev, The geometry of dented pentagram maps, arXiv: 1308.5363

[14] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[15] I. M. Krichever, “Algebraicheskie krivye i lineine raznostnye uravneniya”, UMN, 33:4 (1979), 215–216 | MR

[16] I. M. Krichever, “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhniki, Sovremennye problemy matematiki, 23, VINITI, 1983, 79–139 | MR

[17] I. M. Krichever, S. P. Novikov, “Dvumerizovannaya tsepochka Tody, kommutiruyuschie raznostnye operatory i golomorfnye rassloeniya”, UMN, 58:3 (2003), 51–88 | DOI | MR | Zbl

[18] G. M. Beffa, “On integrable generalizations of the pentagram map”, Int. Math. Res. Not., 12 (2015), 3669–3693, arXiv: 1303.4295 | MR | Zbl

[19] S. Morier-Genoud, “Arithmetics of $2$-friezes”, J. Algebraic Combin., 36:4 (2012), 515–539 | DOI | MR | Zbl

[20] S. Morier-Genoud, V. Ovsienko, S. Tabachnikov, “$2$-Frieze patterns and the cluster structure of the space of polygons”, Ann. Inst. Fourier, 62:3 (2012), 937–987 | DOI | MR | Zbl

[21] S. Morier-Genoud, V. Ovsienko, R. E. Schwartz, S. Tabachnikov, “Linear difference equations, frieze patterns and combinatorial Gale transform”, Forum Math. Sigma, 2 (2014), e22, arXiv: 1309.3880 | DOI | MR | Zbl

[22] S. Morier-Genoud, V. Ovsienko, S. Tabachnikov, $SL_2(\mathbb{Z})$-tiling of the torus, Coxeter–Conway friezes and Farey triangulations, arXiv: 1402.5536

[23] D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related nonlinear equations”, Proc. Int. Symp. Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115–153 | MR

[24] V. Ovsienko, R. Schwartz, S. Tabachnikov, “The pentagram map: A discrete integrable system”, Comm. Math. Phys., 299:2 (2010), 409–446 | DOI | MR | Zbl

[25] V. Ovsienko, R. Schwartz, S. Tabachnikov, “Liouville–Arnold integrability of the pentagram map on closed polygons”, Duke Math. J., 162:12 (2013), 2149–2196 | DOI | MR | Zbl

[26] V. Ovsienko, S. Tabachnikov, Coxeter's frieze patterns and discretization of the Virasoro orbit, arXiv: 1312.3021

[27] J. Propp, The combinatorics of frieze patterns and Markoff numbers, arXiv: math/0511633

[28] R. Schwartz, “Discrete monodromy, pentagrams, and the method of condensation”, J. Fixed Point Theory Appl., 3:2 (2008), 379–409 | DOI | MR | Zbl

[29] R. Schwartz, “The pentagramm map”, Experiment. Math., 1:1 (1992), 71–81 | MR | Zbl

[30] F. Soloviev, “Integrability of the pentagram map”, Duke. Math. J., 162:15 (2013), 2815–2853 | DOI | MR | Zbl

[31] A. Zabrodin, “Discrete Hirota's equation in quantum integrable models”, Internat. J. Modern Phys. B, 11:26–27 (1997), 3125–3158 | DOI | MR | Zbl