Universal Groups of Intermediate Growth and Their Invariant Random Subgroups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We exhibit examples of groups of intermediate growth with $2^{\aleph_0}$ ergodic continuous invariant random subgroups. The examples are the universal groups associated with a family of groups of intermediate growth.
Keywords: invariant random subgroup, group of intermediate growth, space of marked groups.
@article{FAA_2015_49_3_a0,
     author = {M. G. Benli and R. I. Grigorchuk and T. V. Nagnibeda},
     title = {Universal {Groups} of {Intermediate} {Growth} and {Their} {Invariant} {Random} {Subgroups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a0/}
}
TY  - JOUR
AU  - M. G. Benli
AU  - R. I. Grigorchuk
AU  - T. V. Nagnibeda
TI  - Universal Groups of Intermediate Growth and Their Invariant Random Subgroups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 1
EP  - 21
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a0/
LA  - ru
ID  - FAA_2015_49_3_a0
ER  - 
%0 Journal Article
%A M. G. Benli
%A R. I. Grigorchuk
%A T. V. Nagnibeda
%T Universal Groups of Intermediate Growth and Their Invariant Random Subgroups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 1-21
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a0/
%G ru
%F FAA_2015_49_3_a0
M. G. Benli; R. I. Grigorchuk; T. V. Nagnibeda. Universal Groups of Intermediate Growth and Their Invariant Random Subgroups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 1-21. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a0/

[1] M. Abért, Y. Glasner, B. Virág, “Kesten's theorem for invariant random subgroups”, Duke Math. J., 163:3 (2014), 465–488, arXiv: 1201.3399 | DOI | MR | Zbl

[2] L. Bartholdi, R. I. Grigorchuk, “On parabolic subgroups and {H}ecke algebras of some fractal groups”, Serdica Math. J., 28:1 (2002), 47–90 | MR | Zbl

[3] M. G. Benli, R. Grigorchuk, P. de la Harpe, “Amenable groups without finitely presented amenable covers”, Bull. Math. Sci., 3:1 (2013), 73–131 | DOI | MR | Zbl

[4] L. Bowen, R. Grigorchuk, R. Kravchenko, “Invariant random subgroups of the lamplighter group”, Israel J. Math., 207:2 (2015), 763–782, arXiv: 1206.6780 | DOI | MR | Zbl

[5] L. Bowen, “Invariant random subgroups of the free group”, Groups, Geometry, Dynamics (to appear) , arXiv: 1204.5939 | MR

[6] C. Champetier, “L'espace des groupes de type fini”, Topology, 39:4 (2000), 657–680 | DOI | MR | Zbl

[7] D. D'Angeli, A. Donno, M. Matter, T. Nagnibeda, “Schreier graphs of the Basilica group”, J. Mod. Dyn., 4:1 (2010), 167–205 | DOI | MR | Zbl

[8] P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 2000 | MR | Zbl

[9] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Suschanskii, “Avtomaty, dinamicheskie sistemy i gruppy”, Dinamicheskie sistemy, avtomaty i beskonechnye gruppy, Sb. statei, Trudy MIAN, 231, Nauka, M., 2000, 134–214 | MR | Zbl

[10] R. I. Grigorchuk, “Milnor's problem on the growth of groups and its consequences”, Frontiers in Complex Dynamics, Princeton Math. Ser., 51, Princeton Univ. Press, Princeton, NJ, 705–773, arXiv: 1111.0512 | MR

[11] R. I. Grigorchuk, “Konstruktsiya $p$-grupp promezhutochnogo rosta, obladayuschikh kontinuumom faktorgrupp”, Algebra i logika, 23:4 (1984), 383–394 | MR | Zbl

[12] R. I. Grigorchuk, “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR, ser. matem., 48:5 (1984), 939–985 | MR

[13] R. I. Grigorchuk, “Just infinite branch groups”, New horizons in pro-$p$ groups, Progr. Math., 184, Birkhäuser, Boston, MA, 2000, 121–179 | MR | Zbl

[14] R. I. Grigorchuk, “Nekotorye voprosy dinamiki gruppovykh deistvii na kornevykh derevyakh”, Sovremennye problemy matematiki, Sb. statei. K 75-letiyu Instituta, Trudy MIAN, 273, MAIK, M., 2011, 72–191 | MR

[15] R. Grigorchuk, Z. Šunić, “Self-similarity and branching in group theory”, Groups St. Andrews 2005, London Math. Soc. Lecture Note Series, 1, Cambridge Univ. Press, Cambridge, 2007, 36–95 | MR

[16] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Math., 156, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[17] J. Lindenstrauss, G. Olsen, Y. Sternfeld, “The Poulsen simplex”, Ann. Inst. Fourier (Grenoble), 28:1 (1978), 91–114 | DOI | MR | Zbl

[18] A. Mann, How Groups Grow, London Math. Soc. Lecture Note Series, 395, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[19] J. Milnor, “Problem 5603”, Advanced Problems 5600–5609, Amer. Math. Monthly, 75:1 (1968), 685–686 | MR

[20] R. Muchnik, Amenability of Universal 2-Grigorchuk group, arXiv: math/0505572

[21] V. Nekrashevych, Self-Similar Groups, Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[22] A. Yu. Olshanskii, “Beskonechnaya gruppa s podgruppami prostykh poryadkov”, Izv. AN SSSR, cer. matem., 44:2 (1980), 309–321 | MR

[23] D. V. Osin, “Algebraic entropy of elementary amenable groups”, Geom. Dedicata, 107 (2004), 133–151 | DOI | MR | Zbl

[24] K. R. Parthasaraty, Probability Measures on Metric Spaces, (reprint originala 1967 g.), Amer. Math. Soc. Chelsia Publishing, Providence, RI, 2005 | MR

[25] S. Sidki, “Automorphisms of one-rooted trees: Growth, circuit structure and acyclicity”, J. Math. Sci., 100:1 (2000), 1925–1943 | DOI | MR | Zbl

[26] A. M. Vershik, “Nesvobodnye deistviya schetnykh grupp i ikh kharaktery”, Zap. nauchn. sem. POMI, 378 (2010), 5–16 | MR

[27] A. M. Vershik, “Totally nonfree actions and the infinite symmetric group”, Mosc. Math. J., 12:1 (2012), 193–212, 216 | DOI | MR | Zbl

[28] Ya. Vorobets, “Notes on the Schreier graphs of the Grigorchuk group”, Dynamical Systems and Group Actions, Contemporary Math., 567, Amer. Math. Soc., Providence, RI, 2012, 221–248 | DOI | MR | Zbl