A quantitative version of the Beurling-Helson theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 39-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any continuous function $\varphi$ on the unit circle such that the sequence $\{e^{in\varphi}\}_{n\in\mathbb{Z}}$ has small Wiener norm $\|e^{in\varphi}\| = o(\log^{1/22}|n|(\log \log |n|)^{-3/11})$, $|n| \to \infty$, is linear. Moreover, lower bounds for the Wiener norms of the characteristic functions of subsets of $\mathbb{Z}_p$ in the case of prime $p$ are obtained.
Keywords: Wiener norm, Beurling-Helson theorem, dissociated sets.
@article{FAA_2015_49_2_a4,
     author = {S. V. Konyagin and I. D. Shkredov},
     title = {A quantitative version of the {Beurling-Helson} theorem},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a4/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - I. D. Shkredov
TI  - A quantitative version of the Beurling-Helson theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 39
EP  - 53
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a4/
LA  - ru
ID  - FAA_2015_49_2_a4
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A I. D. Shkredov
%T A quantitative version of the Beurling-Helson theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 39-53
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a4/
%G ru
%F FAA_2015_49_2_a4
S. V. Konyagin; I. D. Shkredov. A quantitative version of the Beurling-Helson theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 39-53. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a4/

[1] A. Beurling, H. Helson, “Fourier–Stieltjes transforms with bounded powers”, Math. Scand., 1 (1953), 120–126 | DOI | MR | Zbl

[2] B. Green, S. Konyagin, “On the Littlewood problem modulo a prime”, Canad. J. Math., 61:1 (2009), 141–164 | DOI | MR | Zbl

[3] A. Zigmund, Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR

[4] J.-P. Kahane, “Transformées de Fourier des fonctions sommables”, Proc. Internat. Congr. Math., 1962, Inst. Mittag–Leffler, Djursholm, 1963, 114–131 | MR | Zbl

[5] Zh.-P. Kakhan, Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[6] S. V. Konyagin, “O probleme Littlvuda”, Izv. AN SSSR, ser. matem., 45:2 (1981), 243–265 | MR | Zbl

[7] V. V. Lebedev, “Kolichestvennye otsenki v teoremakh tipa teoremy Berlinga–Khelsona”, Matem. sb., 201:12 (2010), 103–130 | DOI | MR

[8] V. V. Lebedev, “Otsenki v teoremakh tipa teoremy Berlinga–Khelsona. Mnogomernyi sluchai”, Matem. zametki, 90:3 (2011), 394–407 | DOI | MR | Zbl

[9] V. V. Lebedev, “Absolyutno skhodyaschiesya ryady Fure. Usilenie teoremy Berlinga–Khelsona”, Funkts. analiz i ego pril., 46:2 (2012), 52–65 | DOI | MR | Zbl

[10] O. C. McGehee, L. Pigno, B. Smith, “Hardy's inequality and the $L^1$ norm of exponential sums”, Ann. of Math., 113:3 (1981), 613–618 | DOI | MR | Zbl

[11] W. Rudin, Fourier Analysis on Groups, John Wiley Sons, New York, 1990, reprint of the 1962 original | MR | Zbl

[12] T. Sanders, “The Littlewood–Gowers problem”, J. Anal. Math., 101 (2007), 123–162 | DOI | MR | Zbl

[13] I. D. Shkredov, “O mnozhestvakh bolshikh trigonometicheskikh summ”, Izv. RAN, 72:1 (2008), 161–182 | DOI | MR | Zbl