@article{FAA_2015_49_2_a3,
author = {Yunbai Dong and Rui Shi},
title = {Stability of isometries between groups of invertible elements in {Banach} algebras},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {34--38},
year = {2015},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/}
}
TY - JOUR AU - Yunbai Dong AU - Rui Shi TI - Stability of isometries between groups of invertible elements in Banach algebras JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 34 EP - 38 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/ LA - ru ID - FAA_2015_49_2_a3 ER -
Yunbai Dong; Rui Shi. Stability of isometries between groups of invertible elements in Banach algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 34-38. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/
[1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis I, Amer. Math. Soc. Colloquium Publications, 48, Amer. Math. Soc., Providence, RI, 2000 | MR
[2] L. Cheng, Y. Dong, W. Zhang, “On stability of nonlinear non-surjective $\varepsilon$-isometries of Banach spaces”, J. Funct. Anal., 264 (2013), 713–734 | DOI | MR | Zbl
[3] O. Hatori, “Isometries between groups of invertible elements in Banach algebras”, Studia Math., 194 (2009), 293–304 | DOI | MR | Zbl
[4] O. Hatori, “Algebraic properties of isometries between groups of invertible elements in Banach algebras”, J. Math. Anal. Appl., 376:1 (2011), 84–93 | DOI | MR | Zbl
[5] D. H. Hyers, S. M. Ulam, “On approximate isometries”, Bull. Amer. Math. Soc., 51 (1945), 288–292 | DOI | MR | Zbl
[6] P. Mankiewicz, “On extension of isometries in normed linear spaces”, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 20 (1972), 367–371 | MR | Zbl
[7] P. Šemrl, “Hyers–Ulam stability of isometries on Banach spaces”, Aequationes Math., 58:1–2 (1999), 157–162 | DOI | MR
[8] P. Šemrl, J. Väisälä, “Nonsurjective nearisometries of Banach spaces”, J. Funct. Anal., 198:1 (2003), 268–278 | DOI | MR