Stability of isometries between groups of invertible elements in Banach algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 34-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the Hyers–Ulam stability of surjective isometries between groups of invertible elements of a unital Banach algebra and $C(K)$, where $K$ is a compact metric space.
Keywords: $\varepsilon$-isometry, Hyers–Ulam problem, Banach algebras.
@article{FAA_2015_49_2_a3,
     author = {Yunbai Dong and Rui Shi},
     title = {Stability of isometries between groups of invertible elements in {Banach} algebras},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--38},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/}
}
TY  - JOUR
AU  - Yunbai Dong
AU  - Rui Shi
TI  - Stability of isometries between groups of invertible elements in Banach algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 34
EP  - 38
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/
LA  - ru
ID  - FAA_2015_49_2_a3
ER  - 
%0 Journal Article
%A Yunbai Dong
%A Rui Shi
%T Stability of isometries between groups of invertible elements in Banach algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 34-38
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/
%G ru
%F FAA_2015_49_2_a3
Yunbai Dong; Rui Shi. Stability of isometries between groups of invertible elements in Banach algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 34-38. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a3/

[1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis I, Amer. Math. Soc. Colloquium Publications, 48, Amer. Math. Soc., Providence, RI, 2000 | MR

[2] L. Cheng, Y. Dong, W. Zhang, “On stability of nonlinear non-surjective $\varepsilon$-isometries of Banach spaces”, J. Funct. Anal., 264 (2013), 713–734 | DOI | MR | Zbl

[3] O. Hatori, “Isometries between groups of invertible elements in Banach algebras”, Studia Math., 194 (2009), 293–304 | DOI | MR | Zbl

[4] O. Hatori, “Algebraic properties of isometries between groups of invertible elements in Banach algebras”, J. Math. Anal. Appl., 376:1 (2011), 84–93 | DOI | MR | Zbl

[5] D. H. Hyers, S. M. Ulam, “On approximate isometries”, Bull. Amer. Math. Soc., 51 (1945), 288–292 | DOI | MR | Zbl

[6] P. Mankiewicz, “On extension of isometries in normed linear spaces”, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 20 (1972), 367–371 | MR | Zbl

[7] P. Šemrl, “Hyers–Ulam stability of isometries on Banach spaces”, Aequationes Math., 58:1–2 (1999), 157–162 | DOI | MR

[8] P. Šemrl, J. Väisälä, “Nonsurjective nearisometries of Banach spaces”, J. Funct. Anal., 198:1 (2003), 268–278 | DOI | MR