Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 88-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for the equation $-\Delta_p = u^{q-1}$ with $p$-Laplacian in a thin spherical annulus in $\mathbb R^n$ with $1 p q p^*_{n-1}$, where $p^*_{n-1}$ is the critical Sobolev exponent for embedding in $\mathbb R^{n-1}$ and either $n=4$ or $n \ge 6$. We prove that this problem has a countable set of solutions concentrated in neighborhoods of certain curves. Any two such solutions are nonequivalent if the annulus is thin enough. As a corollary, we prove that the considered problem has as many solutions as required, provided that the annulus is thin enough.
Keywords: $p$-Laplacian, multiplicity of solutions.
@article{FAA_2015_49_2_a10,
     author = {S. B. Kolonitskii},
     title = {Multiplicity of {1D-concentrated} positive solutions to the {Dirichlet} problem for an equation with $p${-Laplacian}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--92},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a10/}
}
TY  - JOUR
AU  - S. B. Kolonitskii
TI  - Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 88
EP  - 92
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a10/
LA  - ru
ID  - FAA_2015_49_2_a10
ER  - 
%0 Journal Article
%A S. B. Kolonitskii
%T Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 88-92
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a10/
%G ru
%F FAA_2015_49_2_a10
S. B. Kolonitskii. Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 88-92. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a10/

[1] J. Byeon, J. Differential Equations, 136:1 (1997), 136–165 | DOI | MR | Zbl

[2] C. V. Coffman, J. Differential Equations, 54 (1984), 429–437 | DOI | MR | Zbl

[3] S. B. Kolonitskii, Algebra i analiz, 22:3 (2010), 206–221 | MR

[4] Y. Li, J. Differential Equations, 83:2 (1990), 348–367 | DOI | MR | Zbl

[5] A. Malchiodi, Boll. Unione Mat. Ital., Ser. B, 8:3 (2005), 615–628 | MR | Zbl

[6] N. Mizoguchi, T. Suzuki, Houston J. Math., 22:1 (1996), 199–215 | MR | Zbl

[7] A. I. Nazarov, Trudy S.-Peterburg. MO, 10 (2004), 33–62

[8] A. I. Nazarov, Probl. matem. analiza, 20 (2000), 171–190 | Zbl