Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_2_a1, author = {A. M. Vershik and A. V. Malyutin}, title = {Phase transition in the exit boundary problem for random walks on groups}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {7--20}, publisher = {mathdoc}, volume = {49}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/} }
TY - JOUR AU - A. M. Vershik AU - A. V. Malyutin TI - Phase transition in the exit boundary problem for random walks on groups JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 7 EP - 20 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/ LA - ru ID - FAA_2015_49_2_a1 ER -
A. M. Vershik; A. V. Malyutin. Phase transition in the exit boundary problem for random walks on groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 7-20. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/
[1] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIII, Zap. nauchn. sem. POMI, 421, 2014, 58–67 | MR | Zbl
[2] A. M. Vershik, “Zadacha o tsentralnykh merakh na prostranstvakh putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | Zbl
[3] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIV, Zap. nauchn. sem. POMI, 432, 2015, 83–104 | Zbl
[4] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, UMN, 55:4(334) (2000), 59–128 | DOI | MR | Zbl
[5] A. M. Vershik, P. P. Nikitin, “Sledy na beskonechnykh algebrakh Brauera”, Funkts. analiz i ego pril., 40:3 (2006), 3–11 | DOI | MR | Zbl
[6] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups, boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl
[7] R. I. Grigorchuk, “Simmetricheskie sluchainye bluzhdaniya na diskretnykh gruppakh”, UMN, 32:6(198) (1977), 217–218 | MR | Zbl
[8] E. B. Dynkin, A. A. Yushkevich, Teoremy i zadachi o protsessakh Markova, Nauka, M., 1967 | MR
[9] E. B. Dynkin, “Prostranstvo vykhodov markovskogo protsessa”, UMN, 24:4(148) (1969), 89–152 | MR | Zbl
[10] E. B. Dynkin, “Entrance and exit spaces for a Markov process”, Actes du Congrès International des Mathématiciens, Tome 2 (Nice, 1970), Gauthier-Villars, Paris, 1971, 507–512 | MR
[11] E. B. Dynkin, “Nachalnoe i finalnoe povedenie traektorii markovskikh protsessov”, UMN, 26:4(160) (1971), 153–172 | MR
[12] A. Figà-Talamanca, C. Nebbia, Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees, London Mathematical Society Lecture Note Series, 162, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[13] S. V. Kerov, “The boundary of Young lattice and random Young tableaux”, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, Amer. Math. Soc., Providence, RI, 1996, 133–158 | DOI | MR | Zbl
[14] S. Kerov, A. Okounkov, G. Olshansky, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998, no. 4, 173–199 | DOI | MR | Zbl
[15] F. M. Goodman, S. V. Kerov, “The Martin boundary of the Young–Fibonacci lattice”, J. Algebraic Combin., 11:1 (2000), 17–48 | DOI | MR | Zbl
[16] B. Levit, S. A. Molchanov, “Invariantnye tsepi na svobodnykh gruppakh s konechnym chislom obrazuyuschikh”, Vestnik Moskovsk. univ., 1971, no. 6, 80–88 | MR | Zbl
[17] M. Pagliacci, “Heat and wave equation on homogeneous trees”, Boll. Un. Mat. Ital. Ser. VII, A7:1 (1993), 37–45 | MR | Zbl
[18] S. Helgason, “Eigenspaces of the Laplacian, integral representations and irreducibility”, J. Funct. Anal., 17 (1974), 328–353 | DOI | MR | Zbl
[19] Y. Guivar'h, Ji Lizhen, J. C. Taylor, Compactifications of Symmetric Spaces, Progress in Math., 156, Birkhauser, Boston, 1998 | MR