Phase transition in the exit boundary problem for random walks on groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the full exit boundary of random walks on homogeneous trees, in particular, on free groups. This model exhibits a phase transition; namely, the family of Markov measures under study loses ergodicity as a parameter of the random walk changes. The problem under consideration is a special case of the problem of describing the invariant (central) measures on branching graphs, which covers a number of problems in combinatorics, representation theory, and probability and was fully stated in a series of recent papers by the first author. On the other hand, in the context of the theory of Markov processes, close problems were discussed as early as 1960s by E. B. Dynkin.
Mots-clés : phase transition, Markov chain, tail filtration.
Keywords: Martin boundary, Poisson–Furstenberg boundary, Laplace operator, free group, homogeneous tree, Bratteli diagram, intrinsic metric, pascalization, central measure, de Finetti's theorem, dynamic Cayley graph
@article{FAA_2015_49_2_a1,
     author = {A. M. Vershik and A. V. Malyutin},
     title = {Phase transition in the exit boundary problem for random walks on groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - A. V. Malyutin
TI  - Phase transition in the exit boundary problem for random walks on groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 7
EP  - 20
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/
LA  - ru
ID  - FAA_2015_49_2_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A A. V. Malyutin
%T Phase transition in the exit boundary problem for random walks on groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 7-20
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/
%G ru
%F FAA_2015_49_2_a1
A. M. Vershik; A. V. Malyutin. Phase transition in the exit boundary problem for random walks on groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 7-20. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a1/

[1] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIII, Zap. nauchn. sem. POMI, 421, 2014, 58–67 | MR | Zbl

[2] A. M. Vershik, “Zadacha o tsentralnykh merakh na prostranstvakh putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | Zbl

[3] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIV, Zap. nauchn. sem. POMI, 432, 2015, 83–104 | Zbl

[4] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, UMN, 55:4(334) (2000), 59–128 | DOI | MR | Zbl

[5] A. M. Vershik, P. P. Nikitin, “Sledy na beskonechnykh algebrakh Brauera”, Funkts. analiz i ego pril., 40:3 (2006), 3–11 | DOI | MR | Zbl

[6] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups, boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl

[7] R. I. Grigorchuk, “Simmetricheskie sluchainye bluzhdaniya na diskretnykh gruppakh”, UMN, 32:6(198) (1977), 217–218 | MR | Zbl

[8] E. B. Dynkin, A. A. Yushkevich, Teoremy i zadachi o protsessakh Markova, Nauka, M., 1967 | MR

[9] E. B. Dynkin, “Prostranstvo vykhodov markovskogo protsessa”, UMN, 24:4(148) (1969), 89–152 | MR | Zbl

[10] E. B. Dynkin, “Entrance and exit spaces for a Markov process”, Actes du Congrès International des Mathématiciens, Tome 2 (Nice, 1970), Gauthier-Villars, Paris, 1971, 507–512 | MR

[11] E. B. Dynkin, “Nachalnoe i finalnoe povedenie traektorii markovskikh protsessov”, UMN, 26:4(160) (1971), 153–172 | MR

[12] A. Figà-Talamanca, C. Nebbia, Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees, London Mathematical Society Lecture Note Series, 162, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[13] S. V. Kerov, “The boundary of Young lattice and random Young tableaux”, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, Amer. Math. Soc., Providence, RI, 1996, 133–158 | DOI | MR | Zbl

[14] S. Kerov, A. Okounkov, G. Olshansky, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998, no. 4, 173–199 | DOI | MR | Zbl

[15] F. M. Goodman, S. V. Kerov, “The Martin boundary of the Young–Fibonacci lattice”, J. Algebraic Combin., 11:1 (2000), 17–48 | DOI | MR | Zbl

[16] B. Levit, S. A. Molchanov, “Invariantnye tsepi na svobodnykh gruppakh s konechnym chislom obrazuyuschikh”, Vestnik Moskovsk. univ., 1971, no. 6, 80–88 | MR | Zbl

[17] M. Pagliacci, “Heat and wave equation on homogeneous trees”, Boll. Un. Mat. Ital. Ser. VII, A7:1 (1993), 37–45 | MR | Zbl

[18] S. Helgason, “Eigenspaces of the Laplacian, integral representations and irreducibility”, J. Funct. Anal., 17 (1974), 328–353 | DOI | MR | Zbl

[19] Y. Guivar'h, Ji Lizhen, J. C. Taylor, Compactifications of Symmetric Spaces, Progress in Math., 156, Birkhauser, Boston, 1998 | MR