On decompositions of a cyclic permutation into a product of a given number of permutations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 1-6
Voir la notice de l'article provenant de la source Math-Net.Ru
The investigation of decompositions of a permutation into a product of permutations satisfying certain conditions plays a key role in the study of meromorphic functions or, equivalently, branched coverings of the 2-sphere; it goes back to A. Hurwitz' work in the late nineteenth century. In 2000 M. Bousquet-Melou and G. Schaeffer obtained an elegant formula for the number of decompositions of a permutation into a product of a given number of permutations corresponding to coverings of genus 0. Their formula has not been generalized to coverings of the sphere by surfaces of higher genera so far. This paper contains a new proof of the Bousquet-Melou–Schaeffer formula for the case of decompositions of a cyclic permutation, which, hopefully, can be generalized to positive genera.
Keywords:
Hurwitz number
Mots-clés : Bousquet-Melou–Schaeffer formula.
Mots-clés : Bousquet-Melou–Schaeffer formula.
@article{FAA_2015_49_2_a0,
author = {B. S. Bychkov},
title = {On decompositions of a cyclic permutation into a product of a given number of permutations},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--6},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a0/}
}
TY - JOUR AU - B. S. Bychkov TI - On decompositions of a cyclic permutation into a product of a given number of permutations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 1 EP - 6 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a0/ LA - ru ID - FAA_2015_49_2_a0 ER -
B. S. Bychkov. On decompositions of a cyclic permutation into a product of a given number of permutations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 1-6. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a0/