Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_2_a0, author = {B. S. Bychkov}, title = {On decompositions of a cyclic permutation into a product of a given number of permutations}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--6}, publisher = {mathdoc}, volume = {49}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a0/} }
TY - JOUR AU - B. S. Bychkov TI - On decompositions of a cyclic permutation into a product of a given number of permutations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 1 EP - 6 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a0/ LA - ru ID - FAA_2015_49_2_a0 ER -
B. S. Bychkov. On decompositions of a cyclic permutation into a product of a given number of permutations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 1-6. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a0/
[1] S. K. Lando, D. Zvonkin, “O kratnostyakh otobrazheniya Lyashko–Loiengi na stratakh diskriminanta”, Funkts. analiz i ego pril., 33:3 (1999), 21–34 | DOI | MR | Zbl
[2] M. Bousquet-Melou, G. Schaeffer, “Enumeration of planar constellations”, Adv. Appl. Math., 24:4 (2000), 337–368 | DOI | MR | Zbl
[3] T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327 | DOI | MR | Zbl
[4] I. P. Goulden, D. M. Jackson, “The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group”, European J. of Combin., 13:5 (1992), 357–365 | DOI | MR | Zbl
[5] I. P. Goulden, D. M. Jackson, “The KP-hierarchy, branched covers and triangulations”, Adv. Math., 219:3 (2008), 932–951 | DOI | MR | Zbl
[6] A. Hurwitz, “Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–61 | DOI | MR
[7] P. Johnson, Double Hurwitz numbers via the infinite wedge, arXiv: 1008.3266 | MR
[8] E. Looijenga, “The complement of the bifurcation variety of a simple singularity”, Invent. Math., 23 (1974), 105–116 | DOI | MR | Zbl
[9] S. Shadrin, L. Spitz, D. Zvonkine, “On double Hurwitz numbers with completed cycles”, J. London Math. Soc., 86:2 (2012), 407–432 | DOI | MR | Zbl