Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 88-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${\mathcal O}\subset {\mathbb R}^d$ be a bounded $C^{1,1}$ domain. In $L_2({\mathcal O};{\mathbb C}^n)$ we consider strongly elliptic operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ given by the differential expression $b({\mathbf D})^*g({\mathbf x}/\varepsilon)b({\mathbf D})$, $\varepsilon>0$, with Dirichlet and Neumann boundary conditions, respectively. Here $g({\mathbf x})$ is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and $b({\mathbf D})$ is a first-order differential operator. We find approximations of the operators $\exp(-A_{D,\varepsilon} t)$ and $\exp(-A_{N,\varepsilon} t)$ for fixed $t>0$ and small $\varepsilon$ in the $L_2 \to L_2$ and $L_2 \to H^1$ operator norms with error estimates depending on $\varepsilon$ and $t$. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
Keywords: homogenization of periodic differential operators, parabolic systems, initial boundary value problems, effective operator, corrector, operator error estimates.
@article{FAA_2015_49_1_a9,
     author = {Yu. M. Meshkova and T. A. Suslina},
     title = {Homogenization of {Solutions} of {Initial} {Boundary} {Value} {Problems} for {Parabolic} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--93},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a9/}
}
TY  - JOUR
AU  - Yu. M. Meshkova
AU  - T. A. Suslina
TI  - Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 88
EP  - 93
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a9/
LA  - ru
ID  - FAA_2015_49_1_a9
ER  - 
%0 Journal Article
%A Yu. M. Meshkova
%A T. A. Suslina
%T Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 88-93
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a9/
%G ru
%F FAA_2015_49_1_a9
Yu. M. Meshkova; T. A. Suslina. Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 88-93. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a9/