Power Asymptotics of Spectral Functions of Boundary Value Problems for Generalized Second-Order Differential Equations with Boundary Conditions at a Singular Endpoint
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $I=(-\infty,b)$, where $b\le +\infty$, and let $M(x)$, $x\in I$, be a nondecreasing function on $I$ such that $M(x)>0$ for $x\in I$. In the middle of the past century, it was proved that, in the case where $M(x)$ is Lebesgue integrable on the interval $(-\infty, c)$, $c\in I$, the boundary value problem $-\frac{d}{dM(x)} y^+ (x)=\lambda y(x)$, $x\in I$, $\lim_{x\to -\infty}y(x)=1$ is uniquely solvable for any complex $\lambda$ and has at least one spectral function $\tau (\lambda)$ ("${}^+$" denotes right derivative). A result relating the asymptotic behavior of $M(x)$ as $x \to -\infty$ to that of $\tau(\lambda)$ as $\lambda \to +\infty$ is announced. Similar results are also announced for two other boundary value problems with boundary conditions at a singular endpoint.
Keywords: string, boundary value problem, singular endpoint, spectral function.
@article{FAA_2015_49_1_a8,
     author = {I. S. Kats},
     title = {Power {Asymptotics} of {Spectral} {Functions} of {Boundary} {Value} {Problems} for {Generalized} {Second-Order} {Differential} {Equations} with {Boundary} {Conditions} at a {Singular} {Endpoint}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--87},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a8/}
}
TY  - JOUR
AU  - I. S. Kats
TI  - Power Asymptotics of Spectral Functions of Boundary Value Problems for Generalized Second-Order Differential Equations with Boundary Conditions at a Singular Endpoint
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 82
EP  - 87
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a8/
LA  - ru
ID  - FAA_2015_49_1_a8
ER  - 
%0 Journal Article
%A I. S. Kats
%T Power Asymptotics of Spectral Functions of Boundary Value Problems for Generalized Second-Order Differential Equations with Boundary Conditions at a Singular Endpoint
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 82-87
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a8/
%G ru
%F FAA_2015_49_1_a8
I. S. Kats. Power Asymptotics of Spectral Functions of Boundary Value Problems for Generalized Second-Order Differential Equations with Boundary Conditions at a Singular Endpoint. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 82-87. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a8/

[1] I. S. Kats, Dokl. AN SSSR, 106:1 (1956), 15–18 | MR | Zbl

[2] I. S. Kats, Matem. sb., 68(110):2 (1965), 174–227 | MR | Zbl

[3] I. S. Kats, M. G. Krein, “Dopolnenie II”: F. B. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR

[4] I. S. Kats, Dokl. AN SSSR, 106:2 (1956), 183–186 | MR | Zbl

[5] I. S. Kats, Dokl. AN SSSR, 157:4 (1964), 34–37 | MR | Zbl

[6] I. C. Kac, Integral Equtaion Operator Theory, 15:5 (1992), 768–783 | DOI | MR | Zbl

[7] I. S. Kats, Dissertatsiya, FTINT, Kharkov, 1990

[8] C. Fulton, H. Langer, Complex Anal. Oper. Theory, 4:2 (2010), 179–243 | DOI | MR | Zbl

[9] C. Fulton, Math. Nuchr., 281:10 (2008), 1418–1475 | DOI | MR | Zbl

[10] Y. Kasahara, Japan J. Math., 1:1 (1975), 67–84 | DOI | MR | Zbl

[11] I. S. Kats, Izv. AN SSSR, ser. matem., 37:2 (1973), 422–436 | MR

[12] M. G. Krein, Matem. issled., 5:1 (1970), 77–101 | MR | Zbl

[13] M. G. Krein, Dokl. AN SSSR, 82:5 (1952), 669–672 | MR | Zbl

[14] I. S. Kats, M. G. Krein, Izv. vuzov, matem., 2 (1958), 136–153 | MR | Zbl

[15] H. Dym, L. A. Sakhnovich, Oper. Theory: Adv. Appl., 123 (2001), 207–228 | MR | Zbl

[16] I. S. Kac, Integral Equations Operator Theory, 38:4 (2000), 437–457 | DOI | MR | Zbl