Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_1_a3, author = {A. Treibich}, title = {Systems of {Polynomial} {Equations} {Defining} {Hyperelliptic} $d${-Osculating} {Covers}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {49--61}, publisher = {mathdoc}, volume = {49}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a3/} }
A. Treibich. Systems of Polynomial Equations Defining Hyperelliptic $d$-Osculating Covers. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a3/
[1] R. Accola, E. Previato, “Covers of tori: genus $2$”, Lett. Math. Phys., 76:2–3 (2006), 135–161 | DOI | MR | Zbl
[2] A. B. Bogatyrev, “Chebyshëvskoe predstavlenie ratsionalnykh funktsii”, Matem. sb., 201:11 (2010), 19–40 | DOI | MR
[3] E. D. Belokolos, V. Z. Enolskii, “Reduction of Abelian functions and algebraically integrable systems, Part II”, J. Math. Sci., 108:3 (2002), 295–374 | DOI | MR | Zbl
[4] E. Colombo, G. P. Pirola, E. Previato, “Density of elliptic solitons”, J. Reine Angew. Math., 451 (1994), 161–169 | MR | Zbl
[5] B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 531–534 | MR | Zbl
[6] Ch. Hermite, Oeuvres, V. 3, Gauthier-Villars, Paris, 1912 | Zbl
[7] E. Kani, “The number of curves of genus $2$ with elliptic differentials”, J. Reine Angew. Math., 485 (1997), 93–121 | MR | Zbl
[8] E. Kani, “Hurwitz spaces of genus $2$ covers of an elliptic curve”, Collect. Math., 54:1 (2003), 1–51 | MR | Zbl
[9] E. Kani, “The number of genus-$2$ covers of an elliptic curve”, Manuscripta Math., 121:1 (2006), 51–80 | DOI | MR | Zbl
[10] T. Shaska, “Curves of genus $2$ with $(N,N)$ decomposable Jacobians”, J. Symbolic Comput., 31:5 (2001), 603–617 | DOI | MR | Zbl
[11] A. Treibich, “Giperellipticheskie kasatelnye nakrytiya i konechnozonnye potentsialy”, UMN, 56:6 (2001), 89–136 | DOI | MR | Zbl
[12] A. Treibich, “Revêtements hyperelliptiques $d$-osculateurs et solitons elliptiques de la hiérarchie KdV”, C. R. Acad. Sci., Paris, Série I Math., 345:4 (2007), 213–218 | DOI | MR | Zbl
[13] A. Treibich, Hyperelliptic $d$-osculating covers and rational surfaces http://premat.fing.edu.uy/papers/2012/144.pdf
[14] A. Treibich, J.-L. Verdier, “Solitons elliptiques”, The Grothendieck Festschrift, Vol. III, Progress in Math., 88, Birkhäuser, Boston, MA, 1990, 437–479 | MR