Systems of Polynomial Equations Defining Hyperelliptic $d$-Osculating Covers
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 49-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ denote a fixed smooth projective curve of genus $1$ defined over an algebraically closed field $\mathbb{K}$ of arbitrary characteristic $\boldsymbol{p}\neq2$. For any positive integer $n$, we consider the moduli space $H(X,n)$ of degree-$n$ finite separable covers of $X$ by a hyperelliptic curve with three marked Weierstrass points. We parameterize $H(X,n)$ by a suitable space of rational fractions and apply it to studying the (finite) subset of degree-$n$ hyperelliptic tangential covers of $X$. We find a polynomial characterization for the corresponding rational fractions and deduce a square system of polynomial equations whose solutions parameterize these covers. Furthermore, we also obtain nonsquare systems parameterizing hyperelliptic $d$-osculating covers for any $d>1$.
Keywords: finite separable covers, hyperelliptic curves, Weierstrass points.
@article{FAA_2015_49_1_a3,
     author = {A. Treibich},
     title = {Systems of {Polynomial} {Equations} {Defining} {Hyperelliptic} $d${-Osculating} {Covers}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a3/}
}
TY  - JOUR
AU  - A. Treibich
TI  - Systems of Polynomial Equations Defining Hyperelliptic $d$-Osculating Covers
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 49
EP  - 61
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a3/
LA  - ru
ID  - FAA_2015_49_1_a3
ER  - 
%0 Journal Article
%A A. Treibich
%T Systems of Polynomial Equations Defining Hyperelliptic $d$-Osculating Covers
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 49-61
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a3/
%G ru
%F FAA_2015_49_1_a3
A. Treibich. Systems of Polynomial Equations Defining Hyperelliptic $d$-Osculating Covers. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a3/

[1] R. Accola, E. Previato, “Covers of tori: genus $2$”, Lett. Math. Phys., 76:2–3 (2006), 135–161 | DOI | MR | Zbl

[2] A. B. Bogatyrev, “Chebyshëvskoe predstavlenie ratsionalnykh funktsii”, Matem. sb., 201:11 (2010), 19–40 | DOI | MR

[3] E. D. Belokolos, V. Z. Enolskii, “Reduction of Abelian functions and algebraically integrable systems, Part II”, J. Math. Sci., 108:3 (2002), 295–374 | DOI | MR | Zbl

[4] E. Colombo, G. P. Pirola, E. Previato, “Density of elliptic solitons”, J. Reine Angew. Math., 451 (1994), 161–169 | MR | Zbl

[5] B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 531–534 | MR | Zbl

[6] Ch. Hermite, Oeuvres, V. 3, Gauthier-Villars, Paris, 1912 | Zbl

[7] E. Kani, “The number of curves of genus $2$ with elliptic differentials”, J. Reine Angew. Math., 485 (1997), 93–121 | MR | Zbl

[8] E. Kani, “Hurwitz spaces of genus $2$ covers of an elliptic curve”, Collect. Math., 54:1 (2003), 1–51 | MR | Zbl

[9] E. Kani, “The number of genus-$2$ covers of an elliptic curve”, Manuscripta Math., 121:1 (2006), 51–80 | DOI | MR | Zbl

[10] T. Shaska, “Curves of genus $2$ with $(N,N)$ decomposable Jacobians”, J. Symbolic Comput., 31:5 (2001), 603–617 | DOI | MR | Zbl

[11] A. Treibich, “Giperellipticheskie kasatelnye nakrytiya i konechnozonnye potentsialy”, UMN, 56:6 (2001), 89–136 | DOI | MR | Zbl

[12] A. Treibich, “Revêtements hyperelliptiques $d$-osculateurs et solitons elliptiques de la hiérarchie KdV”, C. R. Acad. Sci., Paris, Série I Math., 345:4 (2007), 213–218 | DOI | MR | Zbl

[13] A. Treibich, Hyperelliptic $d$-osculating covers and rational surfaces http://premat.fing.edu.uy/papers/2012/144.pdf

[14] A. Treibich, J.-L. Verdier, “Solitons elliptiques”, The Grothendieck Festschrift, Vol. III, Progress in Math., 88, Birkhäuser, Boston, MA, 1990, 437–479 | MR