Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 18-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an alternative proof of the main result of [B. Feigin, M. Jimbo, S. Loktev, T. Miwa, E. Mukhin, The Ramanujan J., 7:3 (2003), 519–530]; the proof relies on Brion's theorem about convex polyhedra. The result itself can be viewed as a formula for the character of the Feigin–Stoyanovsky subspace of an integrable irreducible representation of the affine Lie algebra $\widehat{\mathfrak{sl}_n}(\mathbb{C})$. Our approach is to assign integer points of a certain polytope to vectors comprising a monomial basis of the subspace and then compute the character by using (a variation of) Brion's theorem.
Keywords: representation theory, character formulas, convex polyhedra, Brion's theorem.
Mots-clés : affine Lie algebras
@article{FAA_2015_49_1_a1,
     author = {I. Yu. Makhlin},
     title = {Characters of the {Feigin--Stoyanovsky} {Subspaces} and {Brion's} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--30},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/}
}
TY  - JOUR
AU  - I. Yu. Makhlin
TI  - Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 18
EP  - 30
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/
LA  - ru
ID  - FAA_2015_49_1_a1
ER  - 
%0 Journal Article
%A I. Yu. Makhlin
%T Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 18-30
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/
%G ru
%F FAA_2015_49_1_a1
I. Yu. Makhlin. Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 18-30. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/

[1] B. Feigin, M. Jimbo, S. Loktev, T. Miwa, E. Mukhin, “Addendum to 'Bosonic formulas for $(k,l)$-admissible partitions'”, The Ramanujan J., 7:4 (2003), 519–530 | DOI | MR | Zbl

[2] B. Feigin, A. Stoyanovsky, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, arXiv: hep-th/9308079v1

[3] A. V. Stoyanovskii, B. L. Feigin, “Funktsionalnye modeli predstavlenii algebr tokov i polubeskonechnye kletki Shuberta”, Funkts. analiz i ego pril., 28:1 (1994), 68–90 | MR | Zbl

[4] M. Brion, “Points entiers dans les polyèdres convexes”, Ann. Sci. Ecole Norm. Sup., 21:4 (1988), 653–663 | DOI | MR | Zbl

[5] C. J. Brianchon, “Théorème nouveau sur les polyèdres”, J. Ecole (Royale) Polytechnique, 15 (1837), 317–319

[6] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[7] M. Beck, S. Robins, Computing the Continuous Discretely. Integer-point enumeration in polyhedra, Springer-Verlag, New York, 2007 | MR | Zbl