Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 18-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an alternative proof of the main result of [B. Feigin, M. Jimbo, S. Loktev, T. Miwa, E. Mukhin, The Ramanujan J.,
7:3 (2003), 519–530]; the proof relies on Brion's theorem about convex polyhedra. The result itself can be viewed as a formula for the character of the Feigin–Stoyanovsky subspace of an integrable irreducible representation of the affine Lie algebra $\widehat{\mathfrak{sl}_n}(\mathbb{C})$. Our approach is to assign integer points of a certain polytope to vectors comprising a monomial basis of the subspace and then compute the character by using (a variation of) Brion's theorem.
Keywords:
representation theory, character formulas, convex polyhedra, Brion's theorem.
Mots-clés : affine Lie algebras
Mots-clés : affine Lie algebras
@article{FAA_2015_49_1_a1,
author = {I. Yu. Makhlin},
title = {Characters of the {Feigin--Stoyanovsky} {Subspaces} and {Brion's} {Theorem}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {18--30},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/}
}
I. Yu. Makhlin. Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 18-30. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/