Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_1_a1, author = {I. Yu. Makhlin}, title = {Characters of the {Feigin--Stoyanovsky} {Subspaces} and {Brion's} {Theorem}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {18--30}, publisher = {mathdoc}, volume = {49}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/} }
I. Yu. Makhlin. Characters of the Feigin--Stoyanovsky Subspaces and Brion's Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 18-30. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a1/
[1] B. Feigin, M. Jimbo, S. Loktev, T. Miwa, E. Mukhin, “Addendum to 'Bosonic formulas for $(k,l)$-admissible partitions'”, The Ramanujan J., 7:4 (2003), 519–530 | DOI | MR | Zbl
[2] B. Feigin, A. Stoyanovsky, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, arXiv: hep-th/9308079v1
[3] A. V. Stoyanovskii, B. L. Feigin, “Funktsionalnye modeli predstavlenii algebr tokov i polubeskonechnye kletki Shuberta”, Funkts. analiz i ego pril., 28:1 (1994), 68–90 | MR | Zbl
[4] M. Brion, “Points entiers dans les polyèdres convexes”, Ann. Sci. Ecole Norm. Sup., 21:4 (1988), 653–663 | DOI | MR | Zbl
[5] C. J. Brianchon, “Théorème nouveau sur les polyèdres”, J. Ecole (Royale) Polytechnique, 15 (1837), 317–319
[6] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[7] M. Beck, S. Robins, Computing the Continuous Discretely. Integer-point enumeration in polyhedra, Springer-Verlag, New York, 2007 | MR | Zbl