The Index of Differential Forms on Complete Intersections
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the development of a homological approach to the problem of calculating the local topological index of holomorphic differential $1$-forms given on complex space. In the study of complete intersections our method is based on the construction of Lebelt and Cousin resolutions, as well as on the simplest properties of the generalized and usual Koszul complexes, regular meromorphic differential forms, and the residue map. In particular, we show that the index of a differential $1$-form with an isolated singularity is equal to the dimension of the local analytical algebra of a zero-dimensional germ which is determined by the ideal generated by the interior product of the form and all Hamiltonian vector fields of the complete intersection. Moreover, in the quasihomogeneous case, the index can be expressed explicitly in terms of values of classical symmetric functions. We also discuss some other methods for computing the homological index of $1$-forms given on analytic spaces with singularities of various types.
Keywords: index of differential forms, homological index, isolated complete intersection singularities, de Rham complex, regular meromorphic forms.
Mots-clés : Koszul complex
@article{FAA_2015_49_1_a0,
     author = {A. G. Aleksandrov},
     title = {The {Index} of {Differential} {Forms} on {Complete} {Intersections}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - The Index of Differential Forms on Complete Intersections
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 1
EP  - 17
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a0/
LA  - ru
ID  - FAA_2015_49_1_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T The Index of Differential Forms on Complete Intersections
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 1-17
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a0/
%G ru
%F FAA_2015_49_1_a0
A. G. Aleksandrov. The Index of Differential Forms on Complete Intersections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a0/

[1] A. G. Aleksandrov, “O komplekse de Rama kvaziodnorodnogo polnogo peresecheniya”, Funkts. analiz i ego pril., 17:1 (1983), 63–64 | MR | Zbl

[2] A. G. Aleksandrov, “Kogomologiya kvaziodnorodnogo polnogo peresecheniya”, Izv. AN SSSR, ser. matem., 49:3 (1985), 467–510 | MR

[3] A. G. Aleksandrov, “Indeks vektornykh polei i logarifmicheskie differentsialnye formy”, Funkts. analiz i ego pril., 39:4 (2005), 1–13 | DOI | MR | Zbl

[4] A. G. Aleksandrov, “L'indice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes (à la mémoire de Henri Poincaré)”, C. R. Acad. Sci., Paris. Sér. I. Math., 350:19–20 (2012), 911–916 | DOI | MR | Zbl

[5] D. Barlet, “Le faisceau $\omega_X^\bullet$ sur un espace analytique $X$ de dimension pure”, Lecture Notes in Math., 670, Springer-Verlag, Berlin, 1978, 187–204 | DOI | MR

[6] W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advances Math., 39, Cambridge University Press, Cambridge, 1993, 1996 | MR | Zbl

[7] H.-Ch.Graf von Bothmer, W. Ebeling, X. Gómez-Mont, “An algebraic formula for the index of a vector field on an isolated complete intersection singularity”, Ann. Inst. Fourier (Grenoble), 58:5 (2008), 1761–1783 | DOI | MR | Zbl

[8] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2(200) (1978), 85–134 | MR | Zbl

[9] W. Ebeling, S. M. Gusein-Zade, “Indices of $1$-forms on an isolated complete intersection singularity”, Moscow Math. J., 3:2 (2003), 439–455 | DOI | MR | Zbl

[10] W. Ebeling, S. M. Gusein-Zade, J. Seade, “Homological index for $1$-forms and a Milnor number for isolated singularities”, Internat. J. Math., 15:9 (2004), 895–905 | DOI | MR | Zbl

[11] X. Gómez-Mont, “An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity”, J. Algebraic Geom., 7:4 (1998), 731–752 | MR | Zbl

[12] G.-M. Greuel, “Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten”, Math. Ann., 214:1 (1975), 235–266 | DOI | MR | Zbl

[13] G.-M. Greuel, H. Hamm, “Invarianten quasihomogener vollständiger Durchschnitte”, Invent. Math., 49:1 (1978), 67–86 | DOI | MR | Zbl

[14] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[15] M. Kersken, “Reguläre Differentialformen”, Manuscripta Math., 46:1 (1984), 1–25 | DOI | MR | Zbl

[16] O. Klehn, “Local residues of holomorphic $1$-forms on an isolated surface singularity”, Manuscripta Math., 109:1 (2002), 93–108 | DOI | MR | Zbl

[17] K. Lebelt, “Torsion äußerer Potenzen von Moduln der homologischen Dimension $1$”, Math. Ann., 211:1 (1974), 183–197 | DOI | MR | Zbl

[18] K. Lebelt, “Freie Auflösungen äußerer Potenzen”, Manuscripta Math., 21:4 (1977), 341–355 | DOI | MR | Zbl

[19] D. Lehmann, M. Soarès, T. Suwa, “On the index of a holomorphic vector field tangent to a singular variety”, Bol. Soc. Brasil. Mat., 26:2 (1995), 183–199 | DOI | MR | Zbl

[20] S. Maklein, Gomologiya, Mir, M., 1966

[21] I. Naruki, “Some remarks on isolated singularities and their application to algebraic manifolds”, Publ. RIMS, 13:1 (1977), 17–46 | DOI | MR | Zbl

[22] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, ser. IA Math., 27:2 (1980), 265–291 | MR | Zbl

[23] P. Seibt, “Infinitesimal extensions of commutative algebras”, J. Pure Appl. Algebra, 16:2 (1980), 197–206 | DOI | MR | Zbl