Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_1_a0, author = {A. G. Aleksandrov}, title = {The {Index} of {Differential} {Forms} on {Complete} {Intersections}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--17}, publisher = {mathdoc}, volume = {49}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a0/} }
A. G. Aleksandrov. The Index of Differential Forms on Complete Intersections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a0/
[1] A. G. Aleksandrov, “O komplekse de Rama kvaziodnorodnogo polnogo peresecheniya”, Funkts. analiz i ego pril., 17:1 (1983), 63–64 | MR | Zbl
[2] A. G. Aleksandrov, “Kogomologiya kvaziodnorodnogo polnogo peresecheniya”, Izv. AN SSSR, ser. matem., 49:3 (1985), 467–510 | MR
[3] A. G. Aleksandrov, “Indeks vektornykh polei i logarifmicheskie differentsialnye formy”, Funkts. analiz i ego pril., 39:4 (2005), 1–13 | DOI | MR | Zbl
[4] A. G. Aleksandrov, “L'indice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes (à la mémoire de Henri Poincaré)”, C. R. Acad. Sci., Paris. Sér. I. Math., 350:19–20 (2012), 911–916 | DOI | MR | Zbl
[5] D. Barlet, “Le faisceau $\omega_X^\bullet$ sur un espace analytique $X$ de dimension pure”, Lecture Notes in Math., 670, Springer-Verlag, Berlin, 1978, 187–204 | DOI | MR
[6] W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advances Math., 39, Cambridge University Press, Cambridge, 1993, 1996 | MR | Zbl
[7] H.-Ch.Graf von Bothmer, W. Ebeling, X. Gómez-Mont, “An algebraic formula for the index of a vector field on an isolated complete intersection singularity”, Ann. Inst. Fourier (Grenoble), 58:5 (2008), 1761–1783 | DOI | MR | Zbl
[8] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2(200) (1978), 85–134 | MR | Zbl
[9] W. Ebeling, S. M. Gusein-Zade, “Indices of $1$-forms on an isolated complete intersection singularity”, Moscow Math. J., 3:2 (2003), 439–455 | DOI | MR | Zbl
[10] W. Ebeling, S. M. Gusein-Zade, J. Seade, “Homological index for $1$-forms and a Milnor number for isolated singularities”, Internat. J. Math., 15:9 (2004), 895–905 | DOI | MR | Zbl
[11] X. Gómez-Mont, “An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity”, J. Algebraic Geom., 7:4 (1998), 731–752 | MR | Zbl
[12] G.-M. Greuel, “Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten”, Math. Ann., 214:1 (1975), 235–266 | DOI | MR | Zbl
[13] G.-M. Greuel, H. Hamm, “Invarianten quasihomogener vollständiger Durchschnitte”, Invent. Math., 49:1 (1978), 67–86 | DOI | MR | Zbl
[14] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973
[15] M. Kersken, “Reguläre Differentialformen”, Manuscripta Math., 46:1 (1984), 1–25 | DOI | MR | Zbl
[16] O. Klehn, “Local residues of holomorphic $1$-forms on an isolated surface singularity”, Manuscripta Math., 109:1 (2002), 93–108 | DOI | MR | Zbl
[17] K. Lebelt, “Torsion äußerer Potenzen von Moduln der homologischen Dimension $1$”, Math. Ann., 211:1 (1974), 183–197 | DOI | MR | Zbl
[18] K. Lebelt, “Freie Auflösungen äußerer Potenzen”, Manuscripta Math., 21:4 (1977), 341–355 | DOI | MR | Zbl
[19] D. Lehmann, M. Soarès, T. Suwa, “On the index of a holomorphic vector field tangent to a singular variety”, Bol. Soc. Brasil. Mat., 26:2 (1995), 183–199 | DOI | MR | Zbl
[20] S. Maklein, Gomologiya, Mir, M., 1966
[21] I. Naruki, “Some remarks on isolated singularities and their application to algebraic manifolds”, Publ. RIMS, 13:1 (1977), 17–46 | DOI | MR | Zbl
[22] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, ser. IA Math., 27:2 (1980), 265–291 | MR | Zbl
[23] P. Seibt, “Infinitesimal extensions of commutative algebras”, J. Pure Appl. Algebra, 16:2 (1980), 197–206 | DOI | MR | Zbl