Acoustic Diffraction Problems on Periodic Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 77-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider acoustic diffraction by graphs $\Gamma$ embedded in $\mathbb{R}^{2}$ and periodic with respect to an action of the group $\mathbb{Z}^{n}$, $n=1,2$. The diffraction problem is described by the Helmholtz equation with variable nonperiodic bounded coefficients and nonperiodic transmission conditions on the graph $\Gamma$. We introduce single and double layer potentials on $\Gamma$ generated by the Schwartz kernel of the operator inverse to the Helmholtz operator on $\mathbb{R}^{2}$ and reduce the diffraction problem to a boundary pseudodifferential equation on the graph. Necessary and sufficient conditions for the boundary operators to be Fredholm are obtained.
Keywords: Helmholtz operators, periodic graphs
Mots-clés : diffraction.
@article{FAA_2014_48_4_a8,
     author = {V. S. Rabinovich},
     title = {Acoustic {Diffraction} {Problems} on {Periodic} {Graphs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--83},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a8/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Acoustic Diffraction Problems on Periodic Graphs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 77
EP  - 83
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a8/
LA  - ru
ID  - FAA_2014_48_4_a8
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Acoustic Diffraction Problems on Periodic Graphs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 77-83
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a8/
%G ru
%F FAA_2014_48_4_a8
V. S. Rabinovich. Acoustic Diffraction Problems on Periodic Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 77-83. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a8/

[1] M. S. Agranovich, Funkts. analiz i ego pril., 43:3 (2009), 3–25 | DOI | MR | Zbl

[2] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag, Berlin etc., 1999 | MR | Zbl

[3] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, John Wiley Sons, New York, 1983 | MR | Zbl

[4] A. Kirsch, Inverse Problems in Math. Physics, Lect. Note in Physics, 422, 1993, 87–102 | DOI | MR | Zbl

[5] P. Kuchment, Waves Random Media, 14:1 (2004), 107–128 | MR

[6] P. Kuchment, J. Phys. A, 38:22 (2005), 4887–4900 | DOI | MR | Zbl

[7] I. L. Garanovich, S. Longhi, A. Sukhorukov, Yu. Kivshar, Physics Reports, 518:1 (2012), 1–79 | DOI

[8] V. S. Rabinovich, S. Roch, Integral Equations Operator Theory, 72:2 (2012), 197–217 | DOI | MR | Zbl

[9] V. Rabinovich, S. Roch, Georgian Math. J., 15:2 (2008), 333–351 | DOI | MR | Zbl

[10] V. Rabinovich, S. Roch, B. Silbermann, Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, 150, Birkhäuser, Basel, 2004 | MR | Zbl

[11] I. B. Simonenko, Izv. AN SSSR, ser. matem., 29:3 (1965), 567–586 | MR | Zbl

[12] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl