Acoustic Diffraction Problems on Periodic Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 77-83
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider acoustic diffraction by graphs $\Gamma$ embedded in $\mathbb{R}^{2}$ and periodic with respect to an action of the group $\mathbb{Z}^{n}$, $n=1,2$. The diffraction problem is described by the Helmholtz
equation with variable nonperiodic bounded coefficients and nonperiodic transmission conditions on the graph $\Gamma$. We introduce single and double layer potentials on $\Gamma$ generated by the Schwartz kernel of the
operator inverse to the Helmholtz operator on $\mathbb{R}^{2}$ and reduce the diffraction problem to a boundary pseudodifferential equation on the graph. Necessary and sufficient conditions for the boundary operators
to be Fredholm are obtained.
Keywords:
Helmholtz operators, periodic graphs
Mots-clés : diffraction.
Mots-clés : diffraction.
@article{FAA_2014_48_4_a8,
author = {V. S. Rabinovich},
title = {Acoustic {Diffraction} {Problems} on {Periodic} {Graphs}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {77--83},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a8/}
}
V. S. Rabinovich. Acoustic Diffraction Problems on Periodic Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 77-83. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a8/