Two-Dimensional von Neumann--Wigner Potentials with a Multiple Positive Eigenvalue
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 74-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the Moutard transformation method we construct two-dimensional Schrödinger operators with real smooth potentials decaying at infinity and having a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their sines and cosines.
Keywords: two-dimensional Schrödinger operator, positive eigenvalues.
Mots-clés : Moutard transformation
@article{FAA_2014_48_4_a7,
     author = {R. G. Novikov and I. A. Taimanov and S. P. Tsarev},
     title = {Two-Dimensional von {Neumann--Wigner} {Potentials} with a {Multiple} {Positive} {Eigenvalue}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {74--77},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/}
}
TY  - JOUR
AU  - R. G. Novikov
AU  - I. A. Taimanov
AU  - S. P. Tsarev
TI  - Two-Dimensional von Neumann--Wigner Potentials with a Multiple Positive Eigenvalue
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 74
EP  - 77
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/
LA  - ru
ID  - FAA_2014_48_4_a7
ER  - 
%0 Journal Article
%A R. G. Novikov
%A I. A. Taimanov
%A S. P. Tsarev
%T Two-Dimensional von Neumann--Wigner Potentials with a Multiple Positive Eigenvalue
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 74-77
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/
%G ru
%F FAA_2014_48_4_a7
R. G. Novikov; I. A. Taimanov; S. P. Tsarev. Two-Dimensional von Neumann--Wigner Potentials with a Multiple Positive Eigenvalue. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 74-77. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/

[1] J. von Neumann, E. P. Wigner, Z. Phys., 30 (1929), 465–467 | Zbl

[2] T. Kato, Comm. Pure Appl. Math., 12 (1959), 403–425 | DOI | MR | Zbl

[3] I. A. Taimanov, S. P. Tsarev, UMN, 62:3 (2007), 217–218 | DOI | MR | Zbl

[4] I. A. Taimanov, S. P. Tsarev, TMF, 157:2 (2008), 188–207 | DOI | MR | Zbl