Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 74-77
Cet article a éte moissonné depuis la source Math-Net.Ru
By the Moutard transformation method we construct two-dimensional Schrödinger operators with real smooth potentials decaying at infinity and having a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their sines and cosines.
Keywords:
two-dimensional Schrödinger operator, positive eigenvalues.
Mots-clés : Moutard transformation
Mots-clés : Moutard transformation
@article{FAA_2014_48_4_a7,
author = {R. G. Novikov and I. A. Taimanov and S. P. Tsarev},
title = {Two-Dimensional von {Neumann{\textendash}Wigner} {Potentials} with a {Multiple} {Positive} {Eigenvalue}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {74--77},
year = {2014},
volume = {48},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/}
}
TY - JOUR AU - R. G. Novikov AU - I. A. Taimanov AU - S. P. Tsarev TI - Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2014 SP - 74 EP - 77 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/ LA - ru ID - FAA_2014_48_4_a7 ER -
%0 Journal Article %A R. G. Novikov %A I. A. Taimanov %A S. P. Tsarev %T Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue %J Funkcionalʹnyj analiz i ego priloženiâ %D 2014 %P 74-77 %V 48 %N 4 %U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/ %G ru %F FAA_2014_48_4_a7
R. G. Novikov; I. A. Taimanov; S. P. Tsarev. Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 74-77. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a7/