On the Adjacency Quantization in an Equation Modeling the Josephson Effect
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 47-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a two-parameter family of nonautonomous ordinary differential equations on the 2-torus. This family models the Josephson effect in superconductivity. We study its rotation number as a function of the parameters and the Arnold tongues (also known as the phase locking domains) defined as the level sets of the rotation number that have nonempty interior. The Arnold tongues of this family of equations have a number of nontypical properties: they exist only for integer values of the rotation number, and the boundaries of the tongues are given by analytic curves. (These results were obtained by Buchstaber–Karpov–Tertychnyi and Ilyashenko–Ryzhov–Filimonov.) The tongue width is zero at the points of intersection of the boundary curves, which results in adjacency points. Numerical experiments and theoretical studies carried out by Buchstaber–Karpov–Tertychnyi and Klimenko–Romaskevich show that each Arnold tongue forms an infinite chain of adjacent domains separated by adjacency points and going to infinity in an asymptotically vertical direction. Recent numerical experiments have also shown that for each Arnold tongue all of its adjacency points lie on one and the same vertical line with integer abscissa equal to the corresponding rotation number. In the present paper, we prove this fact for an open set of two-parameter families of equations in question. In the general case, we prove a weaker claim: the abscissa of each adjacency point is an integer, has the same sign as the rotation number, and does not exceed the latter in absolute value. The proof is based on the representation of the differential equations in question as projectivizations of linear differential equations on the Riemann sphere and the classical theory of linear equations with complex time.
Keywords: Josephson effect in superconductivity, ordinary differential equation on the torus, rotation number, Arnold tongue, linear ordinary differential equation with complex time, irregular singularity, Stokes operator.
Mots-clés : monodromy
@article{FAA_2014_48_4_a4,
     author = {A. A. Glutsyuk and V. A. Kleptsyn and D. A. Filimonov and I. V. Shchurov},
     title = {On the {Adjacency} {Quantization} in an {Equation} {Modeling} the {Josephson} {Effect}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a4/}
}
TY  - JOUR
AU  - A. A. Glutsyuk
AU  - V. A. Kleptsyn
AU  - D. A. Filimonov
AU  - I. V. Shchurov
TI  - On the Adjacency Quantization in an Equation Modeling the Josephson Effect
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 47
EP  - 64
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a4/
LA  - ru
ID  - FAA_2014_48_4_a4
ER  - 
%0 Journal Article
%A A. A. Glutsyuk
%A V. A. Kleptsyn
%A D. A. Filimonov
%A I. V. Shchurov
%T On the Adjacency Quantization in an Equation Modeling the Josephson Effect
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 47-64
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a4/
%G ru
%F FAA_2014_48_4_a4
A. A. Glutsyuk; V. A. Kleptsyn; D. A. Filimonov; I. V. Shchurov. On the Adjacency Quantization in an Equation Modeling the Josephson Effect. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 47-64. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a4/

[1] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, RKhD, MTsNMO, VKM NMU, M., 1999

[2] V. I. Arnold, Yu. S. Ilyashenko, “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy-1, Itogi nauki i tekhniki, Sovremennye problemy matematiki. Fundam. napravleniya, 1, VINITI, M., 1985, 7–140 | MR

[3] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “Sistema na tore, modeliruyuschaya dinamiku perekhoda Dzhozefsona”, UMN, 67:1(403) (2012), 181–182 | DOI | MR | Zbl

[4] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “Effekt kvantovaniya chisla vrascheniya”, TMF, 162:2 (2010), 254–265 | DOI | MR | Zbl

[5] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “Osobennosti dinamiki dzhozefsonovskogo perekhoda, smeschennogo sinusoidalnym SVCh-tokom”, Radioelektronika i elektrotekhnika, 51:6 (2006), 757–762 | MR

[6] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “O svoistva differentsialnogo uravneniya, opisyvayuschego dinamiku silnoshuntirovannogo perekhoda Dzhozefsona”, UMN, 59:2 (2004), 187–188 | DOI | MR

[7] Yu. S. Ilyashenko, Lektsii letnei shkoly «Dinamicheskie sistemy», Poprad (Slovakiya), 2009

[8] Yu. S. Ilyashenko, D. A. Ryzhov, D. A. Filimonov, “Zakhvat fazy dlya uravnenii, opisyvayuschikh rezistivnuyu model dzhozefsonovskogo perekhoda, i ikh vozmuschenii”, Funkts. analiz i ego pril., 45:3 (2011), 41–54 | DOI | MR | Zbl

[9] Yu. S. Ilyashenko, A. G. Khovanskii, “Gruppy Galua, operatory Stoksa i teorema Ramisa”, Funkts. analiz i ego pril., 24:4 (1990), 31–42 | MR | Zbl

[10] K. K. Likharev, B. T. Ulrikh, Sistemy s dzhozefsonovskimi kontaktami: osnovy teorii, Izd-vo MGU, M., 1978

[11] N. N. Luzin, “O metode priblizhennogo integrirovaniya akad. S. A. Chaplygina”, UMN, 6:6(46) (1951), 3–27 | MR | Zbl

[12] W. Balser, W. B. Jurkat, D. A. Lutz, “Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations”, J. Math. Anal. Appl., 71:1 (1979), 48–94 | DOI | MR | Zbl

[13] A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, John Wiley and Sons, New York–Chichester–Brisbane–Toronto–Singapore, 1982

[14] R. L. Foote, “Geometry of the Prytz Planimeter”, Rep. Math. Phys., 42:1–2 (1998), 249–271 | DOI | MR | Zbl

[15] J. Guckenheimer, Yu. S. Ilyashenko, “The duck and the devil: canards on the staircase”, Moscow Math. J., 1:1 (2001), 27–47 | DOI | MR | Zbl

[16] S. Shapiro, A. Janus, S. Holly, “Effect of microwaves on Josephson currents in superconducting tunneling”, Rev. Mod. Phys., 36 (1964), 223–225 | DOI

[17] W. B. Jurkat, D. A. Lutz, A. Peyerimhoff, “Birkhoff invariants and effective calculations for meromorphic linear differential equations”, J. Math. Anal. Appl., 53:2 (1976), 438–470 | DOI | MR | Zbl

[18] A. Klimenko, O. Romaskevich, “Asymptotic properties of Arnold tongues and Josephson effect”, Moscow Math. J., 14:2 (2014), 367–384 | DOI | MR | Zbl

[19] Y. Sibuya, “Stokes phenomena”, Bull. Amer. Math. Soc., 83:5 (1977), 1075–1077 | DOI | MR | Zbl