Homogenization of Elliptic Problems Depending on a Spectral Parameter
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 88-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2({\mathbb R}^d;{\mathbb C}^n)$ we consider a strongly elliptic operator $A_\varepsilon$ given by the differential expression $b({\mathbf D})^*g({\mathbf x}/\varepsilon)b({\mathbf D})$, $\varepsilon >0$. Here $g({\mathbf x})$ is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and $b({\mathbf D})$ is a first-order differential operator. Let ${\mathcal O}\subset {\mathbb R}^d$ be a bounded domain with boundary of class $C^{1,1}$. We also study the operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ in $L_2({\mathcal O};{\mathbb C}^n)$ given by the same expression with Dirichlet or Neumann boundary conditions, respectively. We find approximations for the resolvents $(A_\varepsilon -\zeta I)^{-1}$, $(A_{D,\varepsilon} -\zeta I)^{-1}$, and $(A_{N,\varepsilon} -\zeta I)^{-1}$ in the operator ($L_2 \to L_2$)- and ($L_2 \to H^1$)-norms with error estimates depending on the parameters $\varepsilon$ and $\zeta$.
Keywords: homogenization of periodic differential operators, effective operator, corrector, operator error estimates.
@article{FAA_2014_48_4_a10,
     author = {T. A. Suslina},
     title = {Homogenization of {Elliptic} {Problems} {Depending} on a {Spectral} {Parameter}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization of Elliptic Problems Depending on a Spectral Parameter
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 88
EP  - 94
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/
LA  - ru
ID  - FAA_2014_48_4_a10
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization of Elliptic Problems Depending on a Spectral Parameter
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 88-94
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/
%G ru
%F FAA_2014_48_4_a10
T. A. Suslina. Homogenization of Elliptic Problems Depending on a Spectral Parameter. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 88-94. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/