Homogenization of Elliptic Problems Depending on a Spectral Parameter
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2({\mathbb R}^d;{\mathbb C}^n)$ we consider a strongly elliptic operator $A_\varepsilon$ given by the differential expression $b({\mathbf D})^*g({\mathbf x}/\varepsilon)b({\mathbf D})$, $\varepsilon >0$. Here $g({\mathbf x})$ is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and $b({\mathbf D})$ is a first-order differential operator. Let ${\mathcal O}\subset {\mathbb R}^d$ be a bounded domain with boundary of class $C^{1,1}$. We also study the operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ in $L_2({\mathcal O};{\mathbb C}^n)$ given by the same expression with Dirichlet or Neumann boundary conditions, respectively. We find approximations for the resolvents $(A_\varepsilon -\zeta I)^{-1}$, $(A_{D,\varepsilon} -\zeta I)^{-1}$, and $(A_{N,\varepsilon} -\zeta I)^{-1}$ in the operator ($L_2 \to L_2$)- and ($L_2 \to H^1$)-norms with error estimates depending on the parameters $\varepsilon$ and $\zeta$.
Keywords: homogenization of periodic differential operators, effective operator, corrector, operator error estimates.
@article{FAA_2014_48_4_a10,
     author = {T. A. Suslina},
     title = {Homogenization of {Elliptic} {Problems} {Depending} on a {Spectral} {Parameter}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization of Elliptic Problems Depending on a Spectral Parameter
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 88
EP  - 94
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/
LA  - ru
ID  - FAA_2014_48_4_a10
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization of Elliptic Problems Depending on a Spectral Parameter
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 88-94
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/
%G ru
%F FAA_2014_48_4_a10
T. A. Suslina. Homogenization of Elliptic Problems Depending on a Spectral Parameter. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 88-94. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a10/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Math. and its Applications, 5, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR

[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[3] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108 | MR

[4] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 18:6 (2006), 1–130 | MR

[5] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[6] G. Griso, Anal. Appl., 4:1 (2006), 61–79 | DOI | MR | Zbl

[7] C. E. Kenig, F. Lin, Z. Shen, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR | Zbl

[8] M. A. Pakhnin, T. A. Suslina, Funkts. analiz i ego pril., 46:2 (2012), 92–96 | DOI | MR | Zbl

[9] M. A. Pakhnin, T. A. Suslina, Algebra i analiz, 24:6 (2012), 139–177 | MR

[10] T. A. Suslina, Funkts. analiz i ego pril., 46:3 (2012), 91–96 | DOI | MR | Zbl

[11] T. A. Suslina, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl

[12] T. A. Suslina, SIAM J. Math. Anal., 45:6 (2013), 3453–3493 | DOI | MR | Zbl

[13] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Math., Springer-Verlag, Heidelberg–Dordrecht–London–New York, 2012 | MR

[14] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[15] Yu. M. Meshkova, T. A. Suslina, Funkts. analiz i ego pril., 49:1 (2015) | DOI | MR | Zbl

[16] T. A. Suslina, Homogenization elliptic problems: error estimates in dependence of the spectral parameter, arXiv: 1406.7530