Khintchine Inequality for Sets of Small Measure
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Let $r_i$ be the Rademacher functions, i.e., $r_i(t):=\operatorname{sign}\sin(2^i\pi t)$, $t\in[0,1]$, $i\in\mathbb{N}$. If a set $E\subset [0,1]$ satisfies the condition $m(E\cap (a,b))>0$ for any interval $(a,b)\subset [0,1]$, then, for some constant $\gamma=\gamma(E)>0$ depending only on $E$ and for all sequences $a=(a_k)_{k=1}^\infty\in\ell^2$, $$ \int_E\bigg|\sum_{i=1}^\infty a_ir_i(t)\bigg|\,dt\ge \gamma \bigg(\sum_{i=1}^\infty a_i^2\bigg)^{1/2}. $$ As a consequence of this result, a version of the weighted Khintchine inequality is obtained.
Keywords: Rademacher functions, Khintchine inequality, Paley–Zygmund inequality.
Mots-clés : $L_p$-spaces
@article{FAA_2014_48_4_a0,
     author = {S. V. Astashkin},
     title = {Khintchine {Inequality} for {Sets} of {Small} {Measure}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Khintchine Inequality for Sets of Small Measure
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 1
EP  - 8
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a0/
LA  - ru
ID  - FAA_2014_48_4_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Khintchine Inequality for Sets of Small Measure
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 1-8
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a0/
%G ru
%F FAA_2014_48_4_a0
S. V. Astashkin. Khintchine Inequality for Sets of Small Measure. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a0/

[1] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl

[2] S. V. Astashkin, G. P. Curbera, “A weighted Khintchine inequality”, Revista Mat. Iberoam., 30:1 (2014), 237–246 | DOI | MR | Zbl

[3] S. B. Stechkin, P. L. Ulyanov, “O mnozhestvakh edinstvennosti”, Izv. AN SSSR, ser. matem., 26:2 (1962), 211–222 | Zbl

[4] S. J. Szarek, “On the best constants in the Khintchin inequality”, Studia Math., 58:2 (1976), 197–208 | DOI | MR | Zbl

[5] A. Zigmund, Trigonometricheskie ryady, v. I, Mir, M., 1965 | MR

[6] D. L. Burkholder, “Independent sequences with the Stein property”, Ann. Math. Statist., 39:4 (1968), 1282–1288 | DOI | MR | Zbl

[7] A. Zygmund, “On the convergence of lacunary trigonometric series”, Fund. Math., 16 (1930), 90–107 | DOI | MR | Zbl

[8] Y. Sagher, K. Ch. Zhou, “A local version of a theorem of Khintchin”, Analysis and Partial Differential Equations, Lect. Notes in Pure and Applied Math., 122, Dekker, New York, 1990, 327–330 | MR

[9] Y. Sagher, K. Zhou, “Exponential integrability of Rademacher series”, Convergence in Ergodic Theory and Probability, de Gruyter, Berlin, 1996, 389–395 | DOI | MR | Zbl

[10] J. Carrillo-Alanís, “On local Khintchine inequalities for spaces of exponential integrability”, Proc. Amer. Math. Soc., 139:8 (2011), 2753–2757 | DOI | MR | Zbl

[11] S. V. Astashkin, G. P. Curbera, “Local Khintchine inequality in rearrangement invariant spaces”, Ann. Mat. Pura Appl. | DOI | MR

[12] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[13] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[14] M. Veraar, “On Khintchine inequalities with a weight”, Proc. Amer. Math. Soc., 138:11 (2011), 4119–4121 | DOI | MR

[15] S. V. Astashkin, G. P. Curbera, “Symmetric kernel of Rademacher multiplicator spaces”, J. Funct. Anal., 226:1 (2005), 173–192 | DOI | MR | Zbl