Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2014_48_3_a6, author = {S. Viarbitskaya}, title = {Curves on the {Oeljeklaus--Toma} {Manifolds}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {84--88}, publisher = {mathdoc}, volume = {48}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a6/} }
S. Viarbitskaya. Curves on the Oeljeklaus--Toma Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a6/
[1] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., Academic Press, Amsterdam–New York, 2003 | MR
[2] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR
[3] M. Inoue, Invent. Math., 24 (1974), 269–310 | DOI | MR | Zbl
[4] J. S. Milne, Fields and Galois Theory, , version 4.21 http://www.jmilne.org/math/CourseNotes/ft.html
[5] J. S. Milne, Algebraic Number Theory, , version 3.02 http://www.jmilne.org/math/CourseNotes/ant.html
[6] K. Oeljeklaus, M. Toma, Ann. Inst. Fourier (Grenoble), 55:1 (2005), 1291–1300 | DOI | MR
[7] L. Ornea, M. Verbitsky, Math. Res. Lett., 18:4 (2011), 747–754 | DOI | MR | Zbl
[8] M. Parton, V. Vuletescu, Math. Z., 270:1 (2012), 179–187, arXiv: 1001.4891 | DOI | MR | Zbl
[9] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl
[10] C. Voisin, Hodge Theory and Complex Algebraic Geometry, V. 1, Cambridge University Press, Cambridge, 2002 | MR | Zbl