Curves on the Oeljeklaus--Toma Manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Oeljeklaus–Toma manifolds are complex non-Kähler manifolds constructed by Oeljeklaus and Toma from certain number fields and generalizing the Inoue surfaces $S_m$. We prove that the Oeljeklaus–Toma manifolds contain no compact complex curves.
Keywords: non-Kähler manifold, complex manifold, surface of class VII, Dirichlet unit theorem.
Mots-clés : Oeljeklaus–Toma manifold, Inoue surface
@article{FAA_2014_48_3_a6,
     author = {S. Viarbitskaya},
     title = {Curves on the {Oeljeklaus--Toma} {Manifolds}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a6/}
}
TY  - JOUR
AU  - S. Viarbitskaya
TI  - Curves on the Oeljeklaus--Toma Manifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 84
EP  - 88
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a6/
LA  - ru
ID  - FAA_2014_48_3_a6
ER  - 
%0 Journal Article
%A S. Viarbitskaya
%T Curves on the Oeljeklaus--Toma Manifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 84-88
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a6/
%G ru
%F FAA_2014_48_3_a6
S. Viarbitskaya. Curves on the Oeljeklaus--Toma Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a6/

[1] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., Academic Press, Amsterdam–New York, 2003 | MR

[2] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[3] M. Inoue, Invent. Math., 24 (1974), 269–310 | DOI | MR | Zbl

[4] J. S. Milne, Fields and Galois Theory, , version 4.21 http://www.jmilne.org/math/CourseNotes/ft.html

[5] J. S. Milne, Algebraic Number Theory, , version 3.02 http://www.jmilne.org/math/CourseNotes/ant.html

[6] K. Oeljeklaus, M. Toma, Ann. Inst. Fourier (Grenoble), 55:1 (2005), 1291–1300 | DOI | MR

[7] L. Ornea, M. Verbitsky, Math. Res. Lett., 18:4 (2011), 747–754 | DOI | MR | Zbl

[8] M. Parton, V. Vuletescu, Math. Z., 270:1 (2012), 179–187, arXiv: 1001.4891 | DOI | MR | Zbl

[9] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl

[10] C. Voisin, Hodge Theory and Complex Algebraic Geometry, V. 1, Cambridge University Press, Cambridge, 2002 | MR | Zbl