``Quantizations'' of Higher Hamiltonian Analogues of the Painlev\'e I and Painlev\'e II Equations with Two Degrees of Freedom
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a solution of an analogue of the Schrödinger equation for the Hamiltonian $ H_1 (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painlevé I hierarchy. This solution is obtained by an explicit change of variables from a solution of systems of linear equations whose compatibility condition is the ordinary differential equation $P_1^2$ with respect to $z$. This solution also satisfies an analogue of the Schrödinger equation corresponding to the Hamiltonian $ H_2 (z, t, q_1, q_2, p_1, p_2) $ of a Hamiltonian system with respect to $t$ compatible with $P_1^2$. A similar situation occurs for the $P_2^2$ equation in the Painlevé II hierarchy.
Mots-clés : quantization, isomonodromic deformations
Keywords: Schrödinger equation, Hamiltonian, Painlevé equations, integrability.
@article{FAA_2014_48_3_a4,
     author = {B. I. Suleimanov},
     title = {``Quantizations'' of {Higher} {Hamiltonian} {Analogues} of the {Painlev\'e} {I} and {Painlev\'e} {II} {Equations} with {Two} {Degrees} of {Freedom}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a4/}
}
TY  - JOUR
AU  - B. I. Suleimanov
TI  - ``Quantizations'' of Higher Hamiltonian Analogues of the Painlev\'e I and Painlev\'e II Equations with Two Degrees of Freedom
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 52
EP  - 62
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a4/
LA  - ru
ID  - FAA_2014_48_3_a4
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%T ``Quantizations'' of Higher Hamiltonian Analogues of the Painlev\'e I and Painlev\'e II Equations with Two Degrees of Freedom
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 52-62
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a4/
%G ru
%F FAA_2014_48_3_a4
B. I. Suleimanov. ``Quantizations'' of Higher Hamiltonian Analogues of the Painlev\'e I and Painlev\'e II Equations with Two Degrees of Freedom. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 52-62. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a4/

[1] R. Garnier, “Sur des équations differentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Normale Sup. (3), 29 (1912), 1–126 | DOI | MR | Zbl

[2] B. I. Suleimanov, “Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, In-t matem. Bashkirskogo nauchnogo tsentra UrO AN SSSR, Ufa, 1988, 93–102 | MR

[3] B. I. Suleimanov, “Gamiltonovoct uravnenii Penleve i metod izomonodromnykh deformatsii”, Differentsialnye uravneniya, 30:5 (1994), 791–796 | MR | Zbl

[4] B. I. Suleimanov, “«Kvantovaniya» vtorogo uravneniya Penleve i problema ekvivalentnosti ego $L$–$A$-par”, TMF, 156:3 (2008), 364–378 | DOI | MR

[5] A. I. Ovseevich, “Filtr Kalmana i kvantovanie”, Dokl. RAN, 414:6 (2007), 732–735 | MR | Zbl

[6] A. I. Ovseevich, “Filtr Kalmana i kvantovanie”, Probl. peredachi inform., 44:1 (2008), 59–79 | MR

[7] D. P. Novikov, “O sisteme Shlezingera s matritsami razmera $2\times2$ i uravnenii Belavina–Polyakova–Zamolodchikova”, TMF, 161:2 (2009), 191–203 | DOI | MR | Zbl

[8] D. P. Novikov, “A monodromy problem and some functions connected with Painleve VI”, Painleve Equations and Related Topic. Proceediings of the Internatinal Conference, Mezhdunarodnyi matematicheskii institut im. L. Eilera, S.-Peterburg, 2011, 118–121 | MR

[9] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painleve equations”, J. Math. Phys, 52:8 (2011) | DOI | MR | Zbl

[10] A. Zabrodin, A. Zotov, “Quantum Painlevé–Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507, arXiv: 1107.5672 | DOI | MR | Zbl

[11] B. I. Suleimanov, “«Kvantovaya» linearizatsiya uravnenii Penleve kak komponenta ikh $L,A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135 | MR

[12] G. Moore, “Geometry of the string equations”, Comm. Math. Phys., 133:2 (1990), 261–304 | DOI | MR | Zbl

[13] A. V. Kitaev, “Tochki povorota lineinykh sistem i dvoinye asimptotiki transtsendentov Penleve”, Zap. nauch. sem. LOMI, 187 (1991), 53–74

[14] B. I. Suleimanov, “Vozniknovenie bezdissipativnykh udarnykh voln i «neperturbativnaya» kvantovaya teoriya gravitatsii”, ZhETF, 105:5 (1994), 1089–1099 | MR

[15] A. V. Gurevich, L. P. Pitaevskii, “Oprokidyvanie prostoi volny v kinetike razrezhennoi plazmy”, ZhETF, 60:6 (1971), 2155–2174 | MR

[16] A. V. Gurevich, L. P. Pitaevskii, “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1973), 590–604 | MR

[17] V. Kudashev, B. Suleimanov, “A soft mechanism for generation the dissipationless shock waves”, Phys. Lett. A, 221:3 (1996), 204–208 | DOI | MR

[18] V. R. Kudashev, B. I. Suleimanov, “Myagkii rezhim formirovaniya bezdissipativnykh udarnykh voln”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya. III, Institut matematiki s VTs, Ufa, 1996, 98–108 http://matem.anrb.ru/e_lib/preprints/BS/bs22.html

[19] G. V. Potemin, “Algebro-geometricheskoe postroenie reshenii uravnenii Uizema”, UMN, 43:5(263) (1988), 211–213 | MR

[20] R. Garifullin, B. Suleimanov, N. Tarkhanov, “Phase shift in the Whitam zone for the Gurevich–Pitaevsky special solution of the Korteveg–de Vries equation”, Phys. Lett. A, 374:13–14 (2010), 1420–1424 | DOI | MR | Zbl

[21] T. Claeys, “Asymptotics for a special solutions to the second member of the Painleve I hierarhy”, J. Phys. A, 43 (2010), 434012 | DOI | MR | Zbl

[22] B. I. Suleimanov, “Asimptotika universalnogo spetsialnogo resheniya Gurevicha–Pitaevskogo uravneniya Kortevega–De Vriza pri $|x|\to \infty$”, Trudy IMM UrO RAN, 18:2 (2012), 245–253

[23] T. Claeys, M. Vanlessen, “The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity, 20:5 (2007), 1163–1184 | DOI | MR | Zbl

[24] V. R. Kudashev, B. I. Culeimanov, “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. matem. mekh., 65:3 (2001), 456–466 | MR | Zbl

[25] B. Dubrovin, “On universality of critical behaviour in hamiltonian PDEs”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 59–109, arXiv: 0804.3790 | MR | Zbl

[26] B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour”, Comm. Math. Phys., 267:1 (2006), 117–139 | DOI | MR | Zbl

[27] É. Brésin, E. Marinari, G. Parisi, “A nonperturbative ambiguty free solution of a string model”, Phys. Lett. B, 242:1 (1990), 35–38 | DOI | MR

[28] M. Douglas, N. Seiberg, S. Shenker, “Flow and unstability in quantum gravity”, Phys. Lett. A, 244:3–4 (1990), 381–385 | DOI | MR

[29] A. R. Itc, “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR, cer. matem., 49:3 (1985), 530–565 | MR

[30] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2(218) (1981), 11–80 | MR | Zbl

[31] B. I. Culeimanov, “Vtoroe uravnenie Penleve v odnoi zadache o nelineinykh effektakh vblizi kaustiki”, Zap. nauchn. sem. LOMI, 187 (1991), 110–128

[32] A. V. Kitaev, “Caustics in $1+1$ integrable systems”, J. Math. Phys., 35:6 (1994), 2934–2954 | DOI | MR | Zbl

[33] R. Haberman, Ren-ji Sun, “Nonlinear cusped caustics for dispersive waves”, Stud. Appl. Math., 72:1 (1985), 1–37 | DOI | MR | Zbl

[34] V. R. Kudashev, B. I. Suleimanov, “Nekotorye tipichnye osobennosti padeniya intensivnosti v neustoichivykh sredakh”, Pisma v ZhETF, 62:4 (1995), 358–362

[35] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR

[36] K. Okamoto, “The Hamiltonians associated to the Painlevé equations”, The Painlevé property: one century later, Springer-Verlag, New York, Berlin, Heidelberg, 1999, 735–787 | DOI | MR | Zbl

[37] H. Kimura, “The degenaration of the two-dimensional Garnier system and the polynomial Hamiltonian structure”, Ann. Mat. Pura Appl., 155 (1989), 25–74 | DOI | MR | Zbl

[38] V. P. Maslov, “Kriticheskie pokazateli kak sledstvie vinerovskogo kvantovaniya termodinamiki”, TMF, 170:3 (2012), 457–467 | DOI | MR | Zbl

[39] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields. II. The Riemann–Hilbert problem”, Res. Inst. Math. Sci., 15:1 (1979), 201–278 | DOI | MR | Zbl

[40] L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebeger Ordnung mit festen kritischen Punkten”, J. für Math., 141 (1912), 96–145 | MR | Zbl

[41] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl