Keywords: Abelianization, quadratic algebras.
@article{FAA_2014_48_3_a2,
author = {B. L. Feigin},
title = {Commutative {Vertex} {Algebras} and {Their} {Degenerations}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {24--33},
year = {2014},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a2/}
}
B. L. Feigin. Commutative Vertex Algebras and Their Degenerations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 24-33. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a2/
[1] B. L. Feigin, E. B. Feigin, “Integriruemye $\widehat{sl_2}$-moduli kak beskonechnye tenzornye proizvedeniya”, Fundamentalnaya matematika segodnya, NMU, M., 2003, 304–334 | MR
[2] B. Feigin, A. Stoyanovski, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, arXiv: hep-th/9308079
[3] A. V. Stoyanovskii, B. L. Feigin,, “Funktsionalnye modeli predstavlenii algebr tokov i polubeskonechnye kletki Shuberta”, Funkts. analiz i ego pril., 28:1 (1994), 68–90 | MR | Zbl
[4] B. Feigin, E. Frenkel, “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities”, I. M. Gelfand Seminar, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, 139–148 | MR | Zbl
[5] B. Feigin, S. Loktev, “On generalized Kostka polynomials and the quantum Verlinde rule”, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 61–79, arXiv: math/9812093 | MR | Zbl
[6] I. B. Frenkel, V. G. Kac, “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62:1 (1980), 23–66 | DOI | MR | Zbl
[7] B. L. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Y. Takeyama, “Fermionic formulas for $(k,3)$-admissible configurations”, Publ. Res. Inst. Math. Sci., 40:1 (2004), 125–162 | DOI | MR | Zbl
[8] V. Kac, Vertex Algebras for Beginners, University Lecture Series, 10, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl