Zero Modes for the Quantum Liouville Model
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of identification of zero modes for the quantum Liouville model is discussed and the corresponding Hilbert space representation is constructed.
Mots-clés : Liouville model, zero modes
Keywords: conformal field theory, quantum dilogarithm.
@article{FAA_2014_48_3_a1,
     author = {L. D. Faddeev},
     title = {Zero {Modes} for the {Quantum} {Liouville} {Model}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a1/}
}
TY  - JOUR
AU  - L. D. Faddeev
TI  - Zero Modes for the Quantum Liouville Model
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 14
EP  - 23
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a1/
LA  - ru
ID  - FAA_2014_48_3_a1
ER  - 
%0 Journal Article
%A L. D. Faddeev
%T Zero Modes for the Quantum Liouville Model
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 14-23
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a1/
%G ru
%F FAA_2014_48_3_a1
L. D. Faddeev. Zero Modes for the Quantum Liouville Model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 14-23. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a1/

[1] J.-L. Gervais, J. Schnittger, “The many faces of the quantum Liouville exponentials”, Nuclear Phys. B, 413 (1994), 433–457, arXiv: hep-th/9308134 | DOI | MR | Zbl

[2] J. Teschner, “A Lecture on the Liouville vertex operators”, Internat. J. Modern. Phys. A, 19 (2004), May, suppl., 436–458, arXiv: hep-th/0303150 | DOI | MR | Zbl

[3] O. Babelon, “Universal exchange algebra for Bloch waves and Liouville theory”, Comm. Math. Phys., 139:3 (1991), 619–643 | DOI | MR | Zbl

[4] L. D. Faddeev, A. Y. Volkov, “Discrete evolution for the zero-modes of the quantum Liouville model”, J. Phys. A, 41 (2008), no. 19, 194008, arXiv: 0803.0230 | DOI | MR | Zbl

[5] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Lecture Notes in Phys., 246, Springer-Verlag, Berlin, 1986, 166–179 | DOI | MR

[6] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, ser. fiz., 283:5 (1985), 1060–1064 | MR | Zbl

[7] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1 (1989), 178–206 | MR

[8] R. M. Kashaev, On the spectrum of Dehn twists in quantum Teichmuller theory, arXiv: math/0008148 | MR

[9] V. V. Fok, L. O. Chekhov, “Kvantovye prostranstva Teikhmyullera”, TMF, 120:3 (1999), 511–528, arXiv: math/9908165 | DOI | MR

[10] S. E. Derkachov, L. D. Faddeev, 3j-symbol for the modular double of $SL_q(2,R)$ revisited, arXiv: 1302.5400

[11] R. M. Kashaev, “The quantum dilagarithm and Dehn twists in quantum Teichmuller theory”, Integrable structures of Exactly Solvable Two-Dimansional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 211–221 | MR | Zbl

[12] L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR | Zbl

[13] A. Y. Volkov, “Noncommutative hypergeometry”, Comm. Math. Phys., 258:2 (2005), 257–273, arXiv: math/0312084 | DOI | MR | Zbl

[14] A. B. Zamolodchikov, A. B. Zamolodchikov, “Conformal bootstrap in Liouville field theory”, Nuclear Phys. B, 477:2 (1996), 577–605, arXiv: hep-th/9506136 | DOI | MR | Zbl

[15] G. Jorjadze, G. Weigt, Zero mode problem of Liouville field theory, arXiv: hep-th/0207041