Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2014_48_3_a1, author = {L. D. Faddeev}, title = {Zero {Modes} for the {Quantum} {Liouville} {Model}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {14--23}, publisher = {mathdoc}, volume = {48}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a1/} }
L. D. Faddeev. Zero Modes for the Quantum Liouville Model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 14-23. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a1/
[1] J.-L. Gervais, J. Schnittger, “The many faces of the quantum Liouville exponentials”, Nuclear Phys. B, 413 (1994), 433–457, arXiv: hep-th/9308134 | DOI | MR | Zbl
[2] J. Teschner, “A Lecture on the Liouville vertex operators”, Internat. J. Modern. Phys. A, 19 (2004), May, suppl., 436–458, arXiv: hep-th/0303150 | DOI | MR | Zbl
[3] O. Babelon, “Universal exchange algebra for Bloch waves and Liouville theory”, Comm. Math. Phys., 139:3 (1991), 619–643 | DOI | MR | Zbl
[4] L. D. Faddeev, A. Y. Volkov, “Discrete evolution for the zero-modes of the quantum Liouville model”, J. Phys. A, 41 (2008), no. 19, 194008, arXiv: 0803.0230 | DOI | MR | Zbl
[5] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Lecture Notes in Phys., 246, Springer-Verlag, Berlin, 1986, 166–179 | DOI | MR
[6] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, ser. fiz., 283:5 (1985), 1060–1064 | MR | Zbl
[7] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1 (1989), 178–206 | MR
[8] R. M. Kashaev, On the spectrum of Dehn twists in quantum Teichmuller theory, arXiv: math/0008148 | MR
[9] V. V. Fok, L. O. Chekhov, “Kvantovye prostranstva Teikhmyullera”, TMF, 120:3 (1999), 511–528, arXiv: math/9908165 | DOI | MR
[10] S. E. Derkachov, L. D. Faddeev, 3j-symbol for the modular double of $SL_q(2,R)$ revisited, arXiv: 1302.5400
[11] R. M. Kashaev, “The quantum dilagarithm and Dehn twists in quantum Teichmuller theory”, Integrable structures of Exactly Solvable Two-Dimansional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 211–221 | MR | Zbl
[12] L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR | Zbl
[13] A. Y. Volkov, “Noncommutative hypergeometry”, Comm. Math. Phys., 258:2 (2005), 257–273, arXiv: math/0312084 | DOI | MR | Zbl
[14] A. B. Zamolodchikov, A. B. Zamolodchikov, “Conformal bootstrap in Liouville field theory”, Nuclear Phys. B, 477:2 (1996), 577–605, arXiv: hep-th/9506136 | DOI | MR | Zbl
[15] G. Jorjadze, G. Weigt, Zero mode problem of Liouville field theory, arXiv: hep-th/0207041