Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 1-13

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing special nonunitary representations of semisimple Lie groups by using representations of Iwasawa subgroups is suggested. As a typical example, the group $U(2,2)$ is studied.
Keywords: semisimple groups, special representations, Iwasawa subgroup, nonunitary representations.
@article{FAA_2014_48_3_a0,
     author = {A. M. Vershik and M. I. Graev},
     title = {Cohomology in {Nonunitary} {Representations} of {Semisimple} {Lie} {Groups} (the {Group} $U(2,2)$)},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 1
EP  - 13
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/
LA  - ru
ID  - FAA_2014_48_3_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 1-13
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/
%G ru
%F FAA_2014_48_3_a0
A. M. Vershik; M. I. Graev. Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$). Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/