Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing special nonunitary representations of semisimple Lie groups by using representations of Iwasawa subgroups is suggested. As a typical example, the group $U(2,2)$ is studied.
Keywords: semisimple groups, special representations, Iwasawa subgroup, nonunitary representations.
@article{FAA_2014_48_3_a0,
     author = {A. M. Vershik and M. I. Graev},
     title = {Cohomology in {Nonunitary} {Representations} of {Semisimple} {Lie} {Groups} (the {Group} $U(2,2)$)},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 1
EP  - 13
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/
LA  - ru
ID  - FAA_2014_48_3_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 1-13
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/
%G ru
%F FAA_2014_48_3_a0
A. M. Vershik; M. I. Graev. Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$). Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a0/

[1] A. M. Vershik, S. I. Karpushev, “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119:4 (1982), 521–533 | MR | Zbl

[2] Y. Shalom, “Rigidity of commensurators and irreducible lattices”, Invent. Math., 141:1 (2000), 1–54 | DOI | MR | Zbl

[3] B. Bekka, P. de la Harpe, A. Valette, Kazdan's Property (T), Cambridge University Press, Cambridge, 2007 | MR

[4] U. Haagrup, “An example of nonnuclear $C^*$-algebra, which has the metric approximation property”, Invent. Math., 50:3 (1978), 279–293 | DOI | MR

[5] P-A. Cherix, et al., Groups with the Haagerup Property: Gromov's A-T-Menability, Birkhäuser Verlag, Basel, 2001 | MR

[6] B. Kostant, “On existence and irreducibility of certain series of representations”, Bull. Amer. Math Soc., 75 (1969), 627–642 | DOI | MR | Zbl

[7] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ — koltso funktsii”, UMN, 28:5(173) (1973), 83–128 | MR

[8] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz i ego pril., 8:2 (1974), 67–69 | MR | Zbl

[9] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie groups and Lie algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 121–179 | MR

[10] R. S. Ismagilov, Representations of infinite-dimensional groups, Transl. Math. Monographs, 152, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[11] A. Guichardet, “Sur la cohomologie des groupe topologiques II”, Bull. Soc. Math. France, 96 (1972), 305–332 | MR | Zbl

[12] P. Delorm, “$1$-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubes. Produits tenoriels continus et représentations”, Bull. Soc. Math. France, 105 (1977), 281–336 | DOI | MR | Zbl

[13] F. A. Berezin, “Predstavleniya nepreryvnogo pryamogo proizvedeniya universalnykh nakryvayuschikh gruppy dvizhenii kompleksnogo shara”, Trudy MMO, 36 (1978), 275–293 | MR | Zbl

[14] H. Araki, “Factorisable representations of current algebra”, Publ. Res. Inst. Math. Sci., Kyoto Univ., Ser. A, 5 (1969/1970), 361–422 | DOI | MR

[15] K. Parthasarathi, K. Schmidt, Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory, Springer-Verlag, Berlin–New York, 1972 | MR

[16] A. M. Vershik, M. I. Graev, “The basic representation of the current group $O(n,1)^X$ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math., 16:3/4 (2005), 499–529 | MR | Zbl

[17] A. M. Vershik, M. I. Graev, “Struktura dopolnitelnykh serii i osobykh predstavlenii grupp $SO(n,1)$ i $SU(n,1)$”, UMN, 61:5 (2006), 3–88 | DOI | MR | Zbl

[18] A. M. Vershik, M. I. Graev, “Integralnye modeli predstavlenii grupp tokov”, Funkts. analiz i ego pril., 42:1 (2008), 22–32 | DOI | MR | Zbl

[19] A. M. Vershik, M. I. Graev, “Integralnye modeli predstavlenii grupp tokov prostykh grupp Li”, UMN, 64:2(386) (2009), 5–72 | DOI | MR | Zbl

[20] A. M. Vershik, M. I. Graev, “Puassonova model fokovskogo prostranstva i predstavleniya grupp tokov”, Algebra i analiz, 23:3 (2011), 63–136 | MR

[21] A. M. Vershik, M. I. Graev, “Osobye predstavleniya grupp $U(n,1)$ i $O(n,1)$ i svyazannye s nimi predstavleniya grupp tokov $U(\infty,1)$ i $O(\infty,1)$ v kvazipuassonovom prostranstve”, Funkts. analiz i ego pril., 46:1 (2012), 1–12 | DOI | MR | Zbl

[22] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Trudy MIAN, 259 (2007), 256–281 | MR | Zbl

[23] A. M. Vershik, “Invariant measures for the continual Cartan subgroup”, J. Funct. Anal., 255:9 (2008), 2661–2682 | DOI | MR | Zbl

[24] A. M. Vershik, “The behavior of the Laplace transform of the invariant measure on the hypersphere of high dimension”, J. Fixed Point Theory Appl., 3:2 (2008), 317–329 | DOI | MR | Zbl

[25] E. B. Vinberg, A. L. Onischik, Ceminar po gruppam Li i algebraicheskim gruppam, Nauka, M, 1988 | MR