Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2014_48_2_a6, author = {D. A. Popov}, title = {On the {Weyl} {Formula} for the {Laplace} {Operator} on {Hyperbolic} {Riemann} {Surfaces}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {93--96}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a6/} }
D. A. Popov. On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 93-96. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a6/
[1] P. H. Berard, Math. Z., 155:3 (1977), 249–276 | DOI | MR | Zbl
[2] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, UMN, 48:4 (1993), 3–130 | MR | Zbl
[3] D. Jakobson, I. Polterovich, J. A. Toth, A lower bound for the remainder in Weyl's law on negatively curved surfaces, 2006, arXiv: math/0612250 | MR
[4] D. A. Hejhal, The Selberg Trace Formula for $PSL(2,\mathbb{R})$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[5] B. Randol, Bull. London Math. Soc., 13 (1981), 309–315 | DOI | MR | Zbl
[6] D. A. Popov, Funkts. analiz i ego pril., 46:2 (2012), 66–82 | DOI | MR | Zbl
[7] D. A. Popov, Funkts. analiz i ego pril., 47:4 (2013), 53–66 | DOI | MR | Zbl