On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 93-96
Cet article a éte moissonné depuis la source Math-Net.Ru
An explicit formula which gives an expansion in the zeros of the Selberg function of the second term in the Weyl formula for any strictly hyperbolic group is obtained, and some of its consequences are stated.
Keywords:
Weyl formula, strictly hyperbolic group, Selberg zeta function.
@article{FAA_2014_48_2_a6,
author = {D. A. Popov},
title = {On the {Weyl} {Formula} for the {Laplace} {Operator} on {Hyperbolic} {Riemann} {Surfaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {93--96},
year = {2014},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a6/}
}
D. A. Popov. On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 93-96. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a6/
[1] P. H. Berard, Math. Z., 155:3 (1977), 249–276 | DOI | MR | Zbl
[2] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, UMN, 48:4 (1993), 3–130 | MR | Zbl
[3] D. Jakobson, I. Polterovich, J. A. Toth, A lower bound for the remainder in Weyl's law on negatively curved surfaces, 2006, arXiv: math/0612250 | MR
[4] D. A. Hejhal, The Selberg Trace Formula for $PSL(2,\mathbb{R})$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[5] B. Randol, Bull. London Math. Soc., 13 (1981), 309–315 | DOI | MR | Zbl
[6] D. A. Popov, Funkts. analiz i ego pril., 46:2 (2012), 66–82 | DOI | MR | Zbl
[7] D. A. Popov, Funkts. analiz i ego pril., 47:4 (2013), 53–66 | DOI | MR | Zbl