Zipf's Law and L.~Levin Probability Distributions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 51-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Zipf's law in its basic incarnation is an empirical probability distribution governing the frequency of usage of words in a language. As Terence Tao recently remarked, it still lacks a convincing and satisfactory mathematical explanation. In this paper I suggest that, at least in certain situations, Zipf's law can be explained as a special case of the a priori distribution introduced and studied by L. Levin. The Zipf ranking corresponding to diminishing probability appears then as the ordering by growing Kolmogorov complexity. One argument justifying this assertion is the appeal to a recent interpretation by Yu. Manin and M. Marcolli of asymptotic bounds for error-correcting codes in terms of phase transition. In the respective partition function, the Kolmogorov complexity of a code plays the role of its energy.
Keywords: Zipf's law, Kolmogorov complexity.
@article{FAA_2014_48_2_a2,
     author = {Yu. I. Manin},
     title = {Zipf's {Law} and {L.~Levin} {Probability} {Distributions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a2/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Zipf's Law and L.~Levin Probability Distributions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 51
EP  - 66
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a2/
LA  - ru
ID  - FAA_2014_48_2_a2
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Zipf's Law and L.~Levin Probability Distributions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 51-66
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a2/
%G ru
%F FAA_2014_48_2_a2
Yu. I. Manin. Zipf's Law and L.~Levin Probability Distributions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 51-66. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a2/

[1] D. Borisov, Yu. Manin, “Generalized operads and their inner cohomomorphisms”, Geometry and Dynamics of Groups and Spaces, In memory of Aleksader Reznikov, Progr. Math., 265, eds. M. Kapranov et al., Birkhäuser, Basel, 2008, 247–308, arXiv: math/0609748 | DOI | MR | Zbl

[2] C. S. Calude, L. Staiger, “On universal computably enumerable prefix codes”, Math. Structures Comput. Sci., 19:1 (2009), 45–57 | DOI | MR | Zbl

[3] S. Dehaene, The Number Sense. How the Mind Creates Mathematics, Oxford Univ. Press, New York, 1997 | MR | Zbl

[4] S. Dehaene, J. Mehler, “Cross-linguistic regularities in the frequency of number words”, Cognition, 43:1 (1992), 1–29 | DOI

[5] J.-P. Delahaye, “Les entiers ne naissent pas égaux”, Pour la Science, 2012, no. 421, Nov., 80–85

[6] K. M. Frahm, A. D. Chepelianskii, D. L. Shepelyansky, PageRank of integers, 2012, arXiv: 1205.6343 | MR

[7] Shi-Ming Huang, David C. Yen, Luen-Wei Yang, Jing-Shiuan Hua, “An investigation of Zipf's Law for fraud detection”, Decision Support Systems, 46:1 (2008), 70–83 | DOI

[8] L. A. Levin, “O razlichnykh merakh slozhnosti konechnykh ob'ektov (aksiomaticheskoe opisanie)”, Dokl. AN SSSR, 227:4 (1976), 804–807 | MR | Zbl

[9] Ming Li, P. Vitányi, An introduction to Kolmogorov complexity and its applications, Springer-Verlag, New York, 1993 | MR | Zbl

[10] B. Mandelbrot, “An information theory of the statistical structure of languages”, Communication Theory, Proc. of the Symposium on Application of Communicaions Theory, Butterworth, Woburn, MA, 1953, 486–502 | MR

[11] D. Yu. Manin, “Zipf's Law and avoidance of excessive synonymy”, Cognitive Science, 32:7 (2008), 1075–1078, arXiv: 0710.0105 | DOI

[12] D. Yu. Manin, Mandelbrot's model for Zipf's Law. Can Mandelbrot's model explain Zipf's Law for language?, J. Quantitative Linguistics, 16:3 (2009), 274–285 | DOI | MR

[13] Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Graduate Texts in Mathematics, 53, 2nd ed., Springer-Verlag, 2010 | DOI | MR | Zbl

[14] Yu. Manin, “Renormalization and computation, II”, Math. Struct. Comput. Sci., 22:5 (2012), 729–751, arXiv: 0908.3430 | DOI | MR | Zbl

[15] Yu. Manin, Kolmogorov complexity as a hidden factor of scientific discourse: from Newton's law to data mining, Talk at the Plenary Session of the Pontifical Academy of Sciences on “Complexity and Analogy in Science: Theoretical, Methodological and Epistemological Aspects” (Vatican, November 5–7, 2012), arXiv: 1301.0081

[16] Yu. Manin, M. Marcolli, Kolmogorov complexity and the asymptotic bound for error-correcting codes, 2012, arXiv: 1203.0653 | MR

[17] B. C. Murtra, R. Solé, On the universality of Zipf's Law, Santa Fe Institute, 2010 (dostupno v Internete) | MR

[18] A. Nabutovsky, S. Weinberger, “The fractal nature of Riemm/Diff, I”, Geometriae Dedicata, 101 (2003), 1–54 | DOI | MR | Zbl

[19] H. Rogers, “Gödel numberings of partial recursive functions”, J. Symb. Logic, 23 (1958), 331–341 | DOI | MR | Zbl

[20] C. P. Schnorr, “Optimal enumerations and optimal Gödel numberings”, Math. Systems Theory, 8:2 (1974), 182–191 | DOI | MR | Zbl

[21] T. Tao, “E pluribus unum: From Complexity, Universality”, Dædalus, 141:3 (2012), 23–34 | DOI | MR

[22] Todd L. Veldhuizen, Software Libraries and Their Reuse: Entropy, Kolmogorov Complexity, and Zipf's Law, 2005, arXiv: cs/0508023

[23] N. S. Yanofsky, “Towards a definition of an algorithm”, J. Logic Comput., 21:2 (2011), 253–286, arXiv: math/0602053 | DOI | MR | Zbl

[24] G. K. Zipf, The Psycho-Biology of Language, Routledge, London, 1936

[25] G. K. Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley, Reading, MA, 1949

[26] A. K. Zvonkin, L. A. Levin, “Slozhnost konechnykh ob'ektov i obosnovanie ponyatii informatsii i sluchainosti s pomoschyu teorii algoritmov”, UMN, 25:6(156) (1970), 85–127 | MR | Zbl