Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2014_48_1_a5, author = {E. B. Feigin}, title = {Degenerate {Group} of {Type} $A$: {Representations} and {Flag} {Varieties}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {73--88}, publisher = {mathdoc}, volume = {48}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a5/} }
E. B. Feigin. Degenerate Group of Type $A$: Representations and Flag Varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a5/
[1] I. Arzhantsev, “Flag varieties as equivariant compactifications of ${\mathbb G}_a^n$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786 | DOI | MR | Zbl
[2] E. Feigin, “${\mathbb G}_a^M$ degeneration of flag varieties”, Selecta Math. (to appear)
[3] E. Feigin, “Degenerate flag varieties and the median Genocchi numbers”, Math. Res. Lett., 18:6 (2011), 1163–1178 | DOI | MR | Zbl
[4] E. Feigin, M. Finkelberg, Degenerate flag varieties of type A: Frobenius splitting and BW theorem, arXiv: 1103.1491 | MR
[5] E. Feigin, M. Finkelberg, P. Littelmann, Symplectic degenerate flag varieties, arXiv: 1106.1399
[6] W. Fulton, J. Harris, Representation theory. A first course, Graduate Texts in Math., Readings in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl
[7] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for irreducible modules in type $A_n$”, Transform. Groups, 16:1 (2011), 71–89 | DOI | MR | Zbl
[8] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for symplectic Lie algebras”, Int. Math. Res. Notices, 24 (2011), 5760–5784 | DOI | MR | Zbl
[9] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006
[10] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR
[11] B. Hassett, Yu. Tschinkel, “Geometry of equivariant compactifications of ${\mathbb G}^n_a$”, Int. Math. Res. Notices, 20 (1999), 1211–1230 | DOI | MR
[12] S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Math., 204, Birkhäuser, Boston, 2002 | MR | Zbl
[13] D. Panyushev, O. Yakimova, “A remarkable contraction of semisimple Lie algebras”, Ann. Inst. Fourier (to appear) | MR
[14] E. Vinberg, On some canonical bases of representation spaces of simple Lie algebras, Conference talk, Bielefeld, 2005
[15] O. Yakimova, “One-parameter contractions of Lie–Poisson brackets”, J. European Math. Society (to appear) | MR