Degenerate Group of Type $A$: Representations and Flag Varieties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 73-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the degeneration of a simple Lie group which is a semidirect product of its Borel subgroup and a normal Abelian unipotent subgroup. We introduce a class of highest weight representations of the degenerate group of type $A$, generalizing the construction of PBW-graded representations of the classical group (PBW is an abbreviation for “Poincaré–Birkhoff–Witt”). Following the classical construction of flag varieties, we consider the closures of orbits of the Abelian unipotent subgroup in projectivizations of the representations. We show that the degenerate flag varieties $\mathscr{F}^a_n$ and their desingularizations $R_n$ can be obtained via this construction. We prove that the coordinate ring of $R_n$ is isomorphic as a vector space to the direct sum of the duals of the highest weight representations of the degenerate group. At the end we state several conjectures on the structure of the highest weight representations of the degenerate group of type $A$.
Mots-clés : Lie algebras
Keywords: highest weight modules, PBW filtration, flag varieties.
@article{FAA_2014_48_1_a5,
     author = {E. B. Feigin},
     title = {Degenerate {Group} of {Type} $A$: {Representations} and {Flag} {Varieties}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a5/}
}
TY  - JOUR
AU  - E. B. Feigin
TI  - Degenerate Group of Type $A$: Representations and Flag Varieties
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 73
EP  - 88
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a5/
LA  - ru
ID  - FAA_2014_48_1_a5
ER  - 
%0 Journal Article
%A E. B. Feigin
%T Degenerate Group of Type $A$: Representations and Flag Varieties
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 73-88
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a5/
%G ru
%F FAA_2014_48_1_a5
E. B. Feigin. Degenerate Group of Type $A$: Representations and Flag Varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a5/

[1] I. Arzhantsev, “Flag varieties as equivariant compactifications of ${\mathbb G}_a^n$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786 | DOI | MR | Zbl

[2] E. Feigin, “${\mathbb G}_a^M$ degeneration of flag varieties”, Selecta Math. (to appear)

[3] E. Feigin, “Degenerate flag varieties and the median Genocchi numbers”, Math. Res. Lett., 18:6 (2011), 1163–1178 | DOI | MR | Zbl

[4] E. Feigin, M. Finkelberg, Degenerate flag varieties of type A: Frobenius splitting and BW theorem, arXiv: 1103.1491 | MR

[5] E. Feigin, M. Finkelberg, P. Littelmann, Symplectic degenerate flag varieties, arXiv: 1106.1399

[6] W. Fulton, J. Harris, Representation theory. A first course, Graduate Texts in Math., Readings in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[7] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for irreducible modules in type $A_n$”, Transform. Groups, 16:1 (2011), 71–89 | DOI | MR | Zbl

[8] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for symplectic Lie algebras”, Int. Math. Res. Notices, 24 (2011), 5760–5784 | DOI | MR | Zbl

[9] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006

[10] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR

[11] B. Hassett, Yu. Tschinkel, “Geometry of equivariant compactifications of ${\mathbb G}^n_a$”, Int. Math. Res. Notices, 20 (1999), 1211–1230 | DOI | MR

[12] S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Math., 204, Birkhäuser, Boston, 2002 | MR | Zbl

[13] D. Panyushev, O. Yakimova, “A remarkable contraction of semisimple Lie algebras”, Ann. Inst. Fourier (to appear) | MR

[14] E. Vinberg, On some canonical bases of representation spaces of simple Lie algebras, Conference talk, Bielefeld, 2005

[15] O. Yakimova, “One-parameter contractions of Lie–Poisson brackets”, J. European Math. Society (to appear) | MR