Spectral Curves for Cauchy--Riemann Operators on Punctured Elliptic Curves
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 86-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that one can define a spectral curve for the Cauchy–Riemann operator on a punctured elliptic curve under appropriate boundary conditions. The algebraic curves thus obtained arise, for example, as irreducible components of the spectral curves of minimal tori with planar ends in $\mathbb{R}^3$. It turns out that these curves coincide with the spectral curves of certain elliptic KP solitons studied by Krichever.
Keywords: Cauchy–Riemann operator, spectral curve
Mots-clés : elliptic soliton.
@article{FAA_2013_47_4_a7,
     author = {{\CYRS}. Bohle and I. A. Taimanov},
     title = {Spectral {Curves} for {Cauchy--Riemann} {Operators} on {Punctured} {Elliptic} {Curves}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--90},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a7/}
}
TY  - JOUR
AU  - С. Bohle
AU  - I. A. Taimanov
TI  - Spectral Curves for Cauchy--Riemann Operators on Punctured Elliptic Curves
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 86
EP  - 90
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a7/
LA  - ru
ID  - FAA_2013_47_4_a7
ER  - 
%0 Journal Article
%A С. Bohle
%A I. A. Taimanov
%T Spectral Curves for Cauchy--Riemann Operators on Punctured Elliptic Curves
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 86-90
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a7/
%G ru
%F FAA_2013_47_4_a7
С. Bohle; I. A. Taimanov. Spectral Curves for Cauchy--Riemann Operators on Punctured Elliptic Curves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 86-90. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a7/