On the Selberg Trace Formula for Strictly Hyperbolic Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 53-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that, for the case of strictly hyperbolic groups, the right-hand side of the Selberg trace formula admits a
representation in the form of a series in the eigenvalues of the Laplacian. The behavior of the Minakshisundaram function as $t\to0$ and $t\to\infty$ is studied. Countably many conditions satisfied by the spectrum of the Laplacian are obtained in explicit form.
Keywords:
Selberg formula, strictly hyperbolic group, spectrum of the Laplacian.
@article{FAA_2013_47_4_a4,
author = {D. A. Popov},
title = {On the {Selberg} {Trace} {Formula} for {Strictly} {Hyperbolic} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {53--66},
publisher = {mathdoc},
volume = {47},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a4/}
}
D. A. Popov. On the Selberg Trace Formula for Strictly Hyperbolic Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 53-66. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a4/