On the Selberg Trace Formula for Strictly Hyperbolic Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 53-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that, for the case of strictly hyperbolic groups, the right-hand side of the Selberg trace formula admits a representation in the form of a series in the eigenvalues of the Laplacian. The behavior of the Minakshisundaram function as $t\to0$ and $t\to\infty$ is studied. Countably many conditions satisfied by the spectrum of the Laplacian are obtained in explicit form.
Keywords: Selberg formula, strictly hyperbolic group, spectrum of the Laplacian.
@article{FAA_2013_47_4_a4,
     author = {D. A. Popov},
     title = {On the {Selberg} {Trace} {Formula} for {Strictly} {Hyperbolic} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a4/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - On the Selberg Trace Formula for Strictly Hyperbolic Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 53
EP  - 66
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a4/
LA  - ru
ID  - FAA_2013_47_4_a4
ER  - 
%0 Journal Article
%A D. A. Popov
%T On the Selberg Trace Formula for Strictly Hyperbolic Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 53-66
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a4/
%G ru
%F FAA_2013_47_4_a4
D. A. Popov. On the Selberg Trace Formula for Strictly Hyperbolic Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 53-66. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a4/

[1] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:3 (1976), 441–481 | DOI | MR

[2] D. A. Hejhal, The Selberg Trace Formula for $PSL(2,\mathbb{R})$, V. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[3] A. B. Venkov, “Spektralnaya teoriya avtomorfnykh funktsii, dzeta-funktsiya Selberga i nekotorye problemy analiticheskoi teorii chisel i matematicheskoi fiziki”, UMN, 36:3 (1979), 69–135 | MR

[4] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[5] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[6] Yu. M. Manin, A. A. Panchishkin, Vvedenie v sovremennuyu teoriyu chisel, MTsNMO, M., 2009 | MR

[7] D. A. Popov, “Yavnaya formula dlya funktsii raspredeleniya sobstvennykh znachenii operatora Laplasa na kompaktnoi rimanovoi poverkhnosti roda $g>1$”, Funkts. analiz i ego pril., 46:2 (2012), 66–82 | DOI | MR | Zbl

[8] S. Minakshisundaram, “Eigenfunctions on Riemannian manifolds”, J. Indian Math. Soc., 17 (1953), 158–165 | MR

[9] H. P. McKean, Jr., I. M. Singer, “Curvature and eigenvalues of the Laplacian”, J. Differential Geometry, 1:1 (1967), 43–69 | MR | Zbl

[10] A. B. Venkov, “Formula sleda Selberga dlya operatora Gekke, porozhdennogo involyutsiei, i sobstvennye znacheniya operatora Laplasa–Beltrami na fundamentalnoi oblasti modulyarnoi gruppy $PSL(2,\mathbb{Z})$”, Izv. AN SSSR, ser. matem., 42:3 (1978), 484–499 | MR | Zbl

[11] Y. Colin de Verdier, “Spectre du laplacien at longueurs des géodésiques périodiques. I”, Composito Math., 27 (1973), 83–106 | MR | Zbl

[12] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[13] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[14] M. Mirzakham, Growth of Weil–Petersson volumes and random hyperbolic surfaces of large genus, arXiv: 1012.2167