The Multiple Residue and the Weight Filtration on the Logarithmic de~Rham Complex
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the multiple residue of logarithmic differential forms with poles along a reducible divisor and compute the kernel and the image of the multiple residue map. As an application we describe the weight filtration on the logarithmic de Rham complex for divisors whose irreducible components are given locally by a regular sequence of holomorphic functions. In particular, this allows us to compute the mixed Hodge structure on the cohomology of the complement of divisors of certain types without the use of theorems on resolution of singularities and the standard reduction to the case of normal crossings.
Mots-clés : multiple residue
Keywords: logarithmic differential forms, logarithmic de Rham complex, regular meromorphic forms, weight filtration.
@article{FAA_2013_47_4_a0,
     author = {A. G. Aleksandrov},
     title = {The {Multiple} {Residue} and the {Weight} {Filtration} on the {Logarithmic} {de~Rham} {Complex}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - The Multiple Residue and the Weight Filtration on the Logarithmic de~Rham Complex
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 1
EP  - 17
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/
LA  - ru
ID  - FAA_2013_47_4_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T The Multiple Residue and the Weight Filtration on the Logarithmic de~Rham Complex
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 1-17
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/
%G ru
%F FAA_2013_47_4_a0
A. G. Aleksandrov. The Multiple Residue and the Weight Filtration on the Logarithmic de~Rham Complex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/

[1] A. G. Aleksandrov, “Non-isolated hypersurface singularities”, Theory of Singularities and Its Applications, Advances in Soviet Mathematics, v. 1, Amer. Math. Soc., Providence, RI, 1990, 211–246 | DOI | MR

[2] A. G. Aleksandrov, A. K. Tsikh, “Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière”, C. R. Acad. Sci. Paris, Ser. I, 333:11 (2001), 973–978 | DOI | MR | Zbl

[3] A. G. Aleksandrov, A. K. Tsikh, “Multi-logarithmic differential forms on complete intersections”, Zh. Sibirsk. federalnogo un-ta, ser. matem., fiz. (izd-vo SFU, Krasnoyarsk), 1:2 (2008), 105–124 | Zbl

[4] D. Barlet, Le faisceau $\omega_X^\bullet$ sur un espace analytique $X$ de dimension pure, Lecture Notes in Math., 670, Springer-Verlag, Berlin, 1978, 187–204 | DOI | MR

[5] D. A. Buchsbaum, D. S. Rim, “A generalized Koszul complex. II. Depth and multiplicity”, Trans. Amer. Math. Soc., 111 (1964), 197–224 | DOI | MR | Zbl

[6] P. Delin, “Teoriya Khodzha II”, Matematika (cb. per.), 17:5 (1973), 3–56 | MR

[7] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 2, Mir, M., 1982 | MR

[8] M. P. Holland, D. Mond, “Logarithmic differential forms and the cohomology of the complement of a divisor”, Math. Scand., 83:2 (1998), 235–254 | DOI | MR | Zbl

[9] M. Kersken, “Reguläre Differentialformen”, Manuscripta Math., 46:1 (1984), 1–25 | DOI | MR | Zbl

[10] E. Kunz, “Holomorphe Differentialformen auf algebraischen Varietäten mit Singularitäten. I”, Manuscripta Math., 15 (1975), 91–108 | DOI | MR | Zbl

[11] K. Morita, “On the basis of twisted de Rham cohomology”, Hokkaido Math. J., 27:3 (1998), 567–603 | DOI | MR | Zbl

[12] K. Saito, “On a generalization of de-Rham lemma”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 165–170 | DOI | MR | Zbl

[13] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, ser. IA, 27:2 (1980), 265–291 | MR | Zbl

[14] J. H. M. Steenbrink, “Mixed Hodge structure on the vanishing cohomology”, Real and Complex Singularities, Proc. Nordic Summer School, Symp. Math., Oslo, 1976, Sijthoff and Noordhoff Publ., Alphen aan den Rijn, 1977 | MR

[15] H. Wiebe, “Über homologische Invarianten lokaler Ringe”, Math. Ann., 179:4 (1969), 257–274 | DOI | MR | Zbl