Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_4_a0, author = {A. G. Aleksandrov}, title = {The {Multiple} {Residue} and the {Weight} {Filtration} on the {Logarithmic} {de~Rham} {Complex}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--17}, publisher = {mathdoc}, volume = {47}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/} }
TY - JOUR AU - A. G. Aleksandrov TI - The Multiple Residue and the Weight Filtration on the Logarithmic de~Rham Complex JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 1 EP - 17 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/ LA - ru ID - FAA_2013_47_4_a0 ER -
A. G. Aleksandrov. The Multiple Residue and the Weight Filtration on the Logarithmic de~Rham Complex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a0/
[1] A. G. Aleksandrov, “Non-isolated hypersurface singularities”, Theory of Singularities and Its Applications, Advances in Soviet Mathematics, v. 1, Amer. Math. Soc., Providence, RI, 1990, 211–246 | DOI | MR
[2] A. G. Aleksandrov, A. K. Tsikh, “Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière”, C. R. Acad. Sci. Paris, Ser. I, 333:11 (2001), 973–978 | DOI | MR | Zbl
[3] A. G. Aleksandrov, A. K. Tsikh, “Multi-logarithmic differential forms on complete intersections”, Zh. Sibirsk. federalnogo un-ta, ser. matem., fiz. (izd-vo SFU, Krasnoyarsk), 1:2 (2008), 105–124 | Zbl
[4] D. Barlet, Le faisceau $\omega_X^\bullet$ sur un espace analytique $X$ de dimension pure, Lecture Notes in Math., 670, Springer-Verlag, Berlin, 1978, 187–204 | DOI | MR
[5] D. A. Buchsbaum, D. S. Rim, “A generalized Koszul complex. II. Depth and multiplicity”, Trans. Amer. Math. Soc., 111 (1964), 197–224 | DOI | MR | Zbl
[6] P. Delin, “Teoriya Khodzha II”, Matematika (cb. per.), 17:5 (1973), 3–56 | MR
[7] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 2, Mir, M., 1982 | MR
[8] M. P. Holland, D. Mond, “Logarithmic differential forms and the cohomology of the complement of a divisor”, Math. Scand., 83:2 (1998), 235–254 | DOI | MR | Zbl
[9] M. Kersken, “Reguläre Differentialformen”, Manuscripta Math., 46:1 (1984), 1–25 | DOI | MR | Zbl
[10] E. Kunz, “Holomorphe Differentialformen auf algebraischen Varietäten mit Singularitäten. I”, Manuscripta Math., 15 (1975), 91–108 | DOI | MR | Zbl
[11] K. Morita, “On the basis of twisted de Rham cohomology”, Hokkaido Math. J., 27:3 (1998), 567–603 | DOI | MR | Zbl
[12] K. Saito, “On a generalization of de-Rham lemma”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 165–170 | DOI | MR | Zbl
[13] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, ser. IA, 27:2 (1980), 265–291 | MR | Zbl
[14] J. H. M. Steenbrink, “Mixed Hodge structure on the vanishing cohomology”, Real and Complex Singularities, Proc. Nordic Summer School, Symp. Math., Oslo, 1976, Sijthoff and Noordhoff Publ., Alphen aan den Rijn, 1977 | MR
[15] H. Wiebe, “Über homologische Invarianten lokaler Ringe”, Math. Ann., 179:4 (1969), 257–274 | DOI | MR | Zbl