A Representation Theorem for Quantum Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 90-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $L^{\infty}$-system up to a quantum order isomorphism.
Keywords: quantum systems, unital quantum cones, quantum $L^{\infty}$-algebra.
@article{FAA_2013_47_3_a8,
     author = {A. A. Dosi},
     title = {A {Representation} {Theorem} for {Quantum} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a8/}
}
TY  - JOUR
AU  - A. A. Dosi
TI  - A Representation Theorem for Quantum Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 90
EP  - 96
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a8/
LA  - ru
ID  - FAA_2013_47_3_a8
ER  - 
%0 Journal Article
%A A. A. Dosi
%T A Representation Theorem for Quantum Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 90-96
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a8/
%G ru
%F FAA_2013_47_3_a8
A. A. Dosi. A Representation Theorem for Quantum Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 90-96. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a8/