The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 75-81
Voir la notice de l'article provenant de la source Math-Net.Ru
It is observed that the Dirichlet ring admits a representation in an infinite-dimensional matrix algebra. The resulting matrices are subsequently used in the construction of nonorthogonal Riesz bases in a separable Hilbert space. This
framework enables custom design of a plethora of bases with interesting features. Remarkably, the representation of signals in any one of these bases is numerically implementable via fast algorithms.
Keywords:
unconditional basis, Riesz basis, fast transform, Dirichlet series.
@article{FAA_2013_47_3_a5,
author = {A. Sowa},
title = {The {Dirichlet} {Ring} and {Unconditional} {Bases} in $L_2[0,2\pi]$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {75--81},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a5/}
}
A. Sowa. The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 75-81. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a5/