The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is observed that the Dirichlet ring admits a representation in an infinite-dimensional matrix algebra. The resulting matrices are subsequently used in the construction of nonorthogonal Riesz bases in a separable Hilbert space. This framework enables custom design of a plethora of bases with interesting features. Remarkably, the representation of signals in any one of these bases is numerically implementable via fast algorithms.
Keywords: unconditional basis, Riesz basis, fast transform, Dirichlet series.
@article{FAA_2013_47_3_a5,
     author = {A. Sowa},
     title = {The {Dirichlet} {Ring} and {Unconditional} {Bases} in $L_2[0,2\pi]$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a5/}
}
TY  - JOUR
AU  - A. Sowa
TI  - The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 75
EP  - 81
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a5/
LA  - ru
ID  - FAA_2013_47_3_a5
ER  - 
%0 Journal Article
%A A. Sowa
%T The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 75-81
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a5/
%G ru
%F FAA_2013_47_3_a5
A. Sowa. The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 75-81. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a5/

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | Zbl

[2] K. I. Babenko, “O sopryazhennykh funktsiyakh”, Dokl. AN SSSR, 62:2 (1948), 157–160 | MR | Zbl

[3] A. Beurling, “The Collected Works of Arno Beurling”, Harmonic Analysis, Contemp. Math., 2, Birkhäuser, Boston, 1989, 378–380 | MR

[4] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[5] K. Chandrasekharan, Arithmetical Functions, Springer-Verlag, New York–Heidelberg–Berlin, 1970 | MR | Zbl

[6] P. Djakov, B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283 (2010), 443–462 | DOI | MR | Zbl

[7] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[8] H. Hedenmalm, P. Lindqvist, K. Seip, “A Hilbert Space of Dirichlet Series and Systems of Dialated Funcitons in $L^2(0,1)$”, Duke Math. J., 86 (1997), 1–37 | DOI | MR | Zbl

[9] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[10] A. M. Olevskii, “Ob operatorakh, proizvodyaschikh uslovnye bazisy v gilbertovom prostranstve”, Matem. zametki, 12:1 (1972), 73–84 | MR | Zbl

[11] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora”, UMN, 34:5(209) (1979), 235–236 | MR | Zbl

[12] A. Sowa, “A fast-transform basis with hysteretic features”, 24th Canadian Conference on Electrical and Computer Engineering (CCECE) (8–11 May 2011), IEEE Conference Proceedings, 000253–000257 | DOI

[13] A. Sowa, “Factorizing matrices by Dirichlet multiplication”, Linear Algebra Appl., 438:5 (2013), 2385–2393 | DOI | MR | Zbl

[14] A. Sowa, “On an eigenvalue problem with a reciprocal-linear term”, Waves in Random and Complex Media, 22 (2012), 186–206 | DOI | MR | Zbl

[15] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York–London–Toronto, 1980 | MR | Zbl