Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_3_a2, author = {M. I. Isaev}, title = {Exponential {Instability} in the {Inverse} {Scattering} {Problem} on the {Energy} {Interval}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {28--36}, publisher = {mathdoc}, volume = {47}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/} }
TY - JOUR AU - M. I. Isaev TI - Exponential Instability in the Inverse Scattering Problem on the Energy Interval JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 28 EP - 36 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/ LA - ru ID - FAA_2013_47_3_a2 ER -
M. I. Isaev. Exponential Instability in the Inverse Scattering Problem on the Energy Interval. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 28-36. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/
[1] G. Alessandrini, “Stable determination of conductivity by boundary measurements”, Appl. Anal., 27:1-3 (1988), 153–172 | DOI | MR | Zbl
[2] N. V. Alekseenko, V. A. Burov, O. D. Rumyantseva, “Reshenie trekhmernoi obratnoi zadachi akusticheskogo rasseyaniya II. Modifitsirovannyi algoritm Novikova”, Akustich. zhurnal, 54:3 (2008), 469–482
[3] M. Di Cristo, L. Rondi, “Examples of exponential instability for inverse inclusion and scattering problems”, Inverse Problems, 19:3 (2003), 685–701 | DOI | MR | Zbl
[4] I. M. Gelfand, “Some aspects of functional analysis and algebra”, Proc. Internat. Congress of Math. (Amsterdam, 1954), v. 1, North Holland, Amsterdam, 1957, 253–276 | MR
[5] L. D. Faddeev, “Edinstvennost resheniya obratnoi zadachi rasseyaniya”, Vestnik Leningradsk. un-ta, 11:7 (1956), 126–130 | MR
[6] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 3, VINITI, M., 1974, 93–180 | MR | Zbl
[7] R. G. Novikov, G. M. Khenkin, “The $\bar{\partial}$-uravnenie v mnogomernoi obratnoi zadache rasseyaniya”, UMN, 42:3(255) (1987), 93–152 | MR | Zbl
[8] M. I. Isaev, “Exponential instability in the Gelfand inverse problem on the energy intervals”, J. Inverse Ill-Posed Probl., 19:3 (2011), 453–473 | DOI | MR
[9] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2(86) (1959), 3–86 | DOI | MR | Zbl
[10] N. Mandache, “Exponential instability in an inverse problem for the Schrödinger equation”, Inverse Problems, 17:5 (2001), 1435–1444 | DOI | MR | Zbl
[11] R. G. Newton, Inverse Schrodinger Scattering in Three Dimensions, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1989 | MR | Zbl
[12] R. G. Novikov, “Mnogomernaya obratnaya spektralnaya zadacha dlya uravneniya $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funkts. analiz i ego pril., 22:4 (1988), 11–22 | MR | Zbl
[13] R. G. Novikov, “The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential”, Comm. Math. Phys., 161:3 (1994), 569–595 | DOI | MR | Zbl
[14] R. G. Novikov, “On determination of the Fourier transform of a potential from the scattering amplitude”, Inverse Problems, 17:5 (2001), 1243–1251 | DOI | MR | Zbl
[15] R. G. Novikov, “The $\bar\partial$-approach to approximate inverse scattering at fixed energy in three dimensions”, IMRP Int. Math. Res. Pap., 6 (2005), 287–349 | DOI | MR | Zbl
[16] R. G. Novikov, “New global stability estimates for the Gelfand–Calderon inverse problem”, Inverse Problems, 27:1 (2011), 015001 | DOI | MR | Zbl
[17] P. Stefanov, “Stability of the inverse problem in potential scattering at fixed energy”, Ann. Inst. Fourier (Grenoble), 40:4 (1990), 867–884 | DOI | MR | Zbl