Exponential Instability in the Inverse Scattering Problem on the Energy Interval
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse scattering problem on the energy interval in three dimensions. We focus on stability and instability questions for this problem. In particular, we prove an exponential instability estimate which shows the optimality, up to the value of the exponent, of the logarithmic stability result obtained by P. Stefanov in 1990 with the use of some special norm for the scattering amplitude at fixed energy.
Keywords: inverse scattering problem, stability estimates, $\varepsilon$-capacity, $\varepsilon$-entropy.
@article{FAA_2013_47_3_a2,
     author = {M. I. Isaev},
     title = {Exponential {Instability} in the {Inverse} {Scattering} {Problem} on the {Energy} {Interval}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {28--36},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/}
}
TY  - JOUR
AU  - M. I. Isaev
TI  - Exponential Instability in the Inverse Scattering Problem on the Energy Interval
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 28
EP  - 36
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/
LA  - ru
ID  - FAA_2013_47_3_a2
ER  - 
%0 Journal Article
%A M. I. Isaev
%T Exponential Instability in the Inverse Scattering Problem on the Energy Interval
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 28-36
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/
%G ru
%F FAA_2013_47_3_a2
M. I. Isaev. Exponential Instability in the Inverse Scattering Problem on the Energy Interval. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 28-36. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a2/

[1] G. Alessandrini, “Stable determination of conductivity by boundary measurements”, Appl. Anal., 27:1-3 (1988), 153–172 | DOI | MR | Zbl

[2] N. V. Alekseenko, V. A. Burov, O. D. Rumyantseva, “Reshenie trekhmernoi obratnoi zadachi akusticheskogo rasseyaniya II. Modifitsirovannyi algoritm Novikova”, Akustich. zhurnal, 54:3 (2008), 469–482

[3] M. Di Cristo, L. Rondi, “Examples of exponential instability for inverse inclusion and scattering problems”, Inverse Problems, 19:3 (2003), 685–701 | DOI | MR | Zbl

[4] I. M. Gelfand, “Some aspects of functional analysis and algebra”, Proc. Internat. Congress of Math. (Amsterdam, 1954), v. 1, North Holland, Amsterdam, 1957, 253–276 | MR

[5] L. D. Faddeev, “Edinstvennost resheniya obratnoi zadachi rasseyaniya”, Vestnik Leningradsk. un-ta, 11:7 (1956), 126–130 | MR

[6] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 3, VINITI, M., 1974, 93–180 | MR | Zbl

[7] R. G. Novikov, G. M. Khenkin, “The $\bar{\partial}$-uravnenie v mnogomernoi obratnoi zadache rasseyaniya”, UMN, 42:3(255) (1987), 93–152 | MR | Zbl

[8] M. I. Isaev, “Exponential instability in the Gelfand inverse problem on the energy intervals”, J. Inverse Ill-Posed Probl., 19:3 (2011), 453–473 | DOI | MR

[9] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2(86) (1959), 3–86 | DOI | MR | Zbl

[10] N. Mandache, “Exponential instability in an inverse problem for the Schrödinger equation”, Inverse Problems, 17:5 (2001), 1435–1444 | DOI | MR | Zbl

[11] R. G. Newton, Inverse Schrodinger Scattering in Three Dimensions, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1989 | MR | Zbl

[12] R. G. Novikov, “Mnogomernaya obratnaya spektralnaya zadacha dlya uravneniya $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funkts. analiz i ego pril., 22:4 (1988), 11–22 | MR | Zbl

[13] R. G. Novikov, “The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential”, Comm. Math. Phys., 161:3 (1994), 569–595 | DOI | MR | Zbl

[14] R. G. Novikov, “On determination of the Fourier transform of a potential from the scattering amplitude”, Inverse Problems, 17:5 (2001), 1243–1251 | DOI | MR | Zbl

[15] R. G. Novikov, “The $\bar\partial$-approach to approximate inverse scattering at fixed energy in three dimensions”, IMRP Int. Math. Res. Pap., 6 (2005), 287–349 | DOI | MR | Zbl

[16] R. G. Novikov, “New global stability estimates for the Gelfand–Calderon inverse problem”, Inverse Problems, 27:1 (2011), 015001 | DOI | MR | Zbl

[17] P. Stefanov, “Stability of the inverse problem in potential scattering at fixed energy”, Ann. Inst. Fourier (Grenoble), 40:4 (1990), 867–884 | DOI | MR | Zbl